Machine Vision (Hardcover) (機器視覺 (精裝版))
Wesley E. Snyder, Hairong Qi
- 出版商: Cambridge
- 出版日期: 2004-02-09
- 定價: $1,450
- 售價: 9.8 折 $1,421
- 語言: 英文
- 頁數: 452
- 裝訂: Hardcover
- ISBN: 052183046X
- ISBN-13: 9780521830461
-
相關分類:
程式語言、Computer Vision
立即出貨 (庫存=1)
買這商品的人也買了...
-
$450$356 -
$872Machine Vision
-
$1,058Image Processing: Analysis and Machine Vision, 2/e
-
$380$323 -
$980$774 -
$650$514 -
$590$466 -
$720$569 -
$850$723 -
$480$379 -
$590$460 -
$490$382 -
$650$514 -
$3,600$3,420 -
$450$405 -
$750$675 -
$880$695 -
$880$695 -
$780$663 -
$750$593 -
$500$450 -
$990$891 -
$580$452 -
$1,200$948 -
$600$468
相關主題
商品描述
Description:
Providing all the necessary theoretical tools, this comprehensive introduction to machine vision shows how they are applied in actual image processing and machine vision systems. A key feature is the inclusion of many programming exercises giving insights into the development of practical image processing algorithms. A CD-ROM containing software and data used in these exercises is also included. Aimed at graduate students in electrical engineering, computer science, and mathematics, the book will be a useful reference for professionals as well.
Table of Contents:
1. Introduction; 2. Review of mathematical principles; 3. Writing programs to process images; 4. Images: description and characterization; 5. Linear operators and kernels; 6. Image relaxation: restoration and feature extraction; 7. Mathematical morphology; 8. Segmentation; 9. Shape; 10. Consistent labeling; 11. Parametric transform; 12. Graphs and graph-theoretic concepts; 13. Image matching; 14. Statistical pattern recognition; 15. Clustering; 16. Syntactic pattern recognition; 17. Applications; 18. Automatic target recognition.
商品描述(中文翻譯)
提供所有必要的理論工具,這本全面介紹機器視覺的書籍展示了它們如何應用於實際的影像處理和機器視覺系統中。其中一個重要特點是包含了許多編程練習,以深入了解實際影像處理算法的開發。書中還附有一個包含這些練習中使用的軟體和數據的光碟。該書針對電機工程、計算機科學和數學的研究生,也將成為專業人士的有用參考資料。
目錄:
1. 簡介; 2. 數學原理回顧; 3. 編寫處理影像的程式; 4. 影像: 描述和特徵化; 5. 線性運算子和核函數; 6. 影像放鬆: 恢復和特徵提取; 7. 數學形態學; 8. 分割; 9. 形狀; 10. 一致標記; 11. 參數變換; 12. 圖形和圖論概念; 13. 影像匹配; 14. 統計模式識別; 15. 聚類; 16. 語法模式識別; 17. 應用; 18. 自動目標識別。