相關主題
商品描述
This accessible text covers key results in functional analysis that are essential for further study in the calculus of variations, analysis, dynamical systems, and the theory of partial differential equations. The treatment of Hilbert spaces covers the topics required to prove the Hilbert-Schmidt Theorem, including orthonormal bases, the Riesz Representation Theorem, and the basics of spectral theory. The material on Banach spaces and their duals includes the Hahn-Banach Theorem, the Krein-Milman Theorem, and results based on the Baire Category Theorem, before culminating in a proof of sequential weak compactness in reflexive spaces. Arguments are presented in detail, and more than 200 fully-worked exercises are included to provide practice applying techniques and ideas beyond the major theorems. Familiarity with the basic theory of vector spaces and point-set topology is assumed, but knowledge of measure theory is not required, making this book ideal for upper undergraduate-level and beginning graduate-level courses.
商品描述(中文翻譯)
這本易於理解的文本涵蓋了功能分析中的關鍵結果,這些結果對於進一步研究變分法、分析學、動態系統以及偏微分方程理論至關重要。對於希爾伯特空間的處理涵蓋了證明希爾伯特-施密特定理所需的主題,包括正交基、里茲表示定理以及光譜理論的基本知識。關於巴拿赫空間及其對偶的材料包括哈恩-巴拿赫定理、克雷因-米爾曼定理,以及基於貝爾類別定理的結果,最後以反射空間中的序列弱緊性證明作為結尾。論證詳細呈現,並包含超過200個完整解答的練習題,以提供應用技術和思想的實踐,超越主要定理的範疇。本書假設讀者對向量空間的基本理論和點集拓撲有一定的了解,但不要求具備測度理論的知識,使得這本書非常適合高年級本科生和初級研究生的課程。