Bayesian Reasoning and Machine Learning (DHL)
David Barber
- 出版商: Cambridge
- 出版日期: 2012-03-12
- 售價: $2,980
- 貴賓價: 9.5 折 $2,831
- 語言: 英文
- 頁數: 735
- 裝訂: Hardcover
- ISBN: 0521518148
- ISBN-13: 9780521518147
-
相關分類:
Machine Learning、機率統計學 Probability-and-statistics
-
相關翻譯:
貝葉斯推理與機器學習 (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$3,500$3,325 -
$990$891 -
$1,362Fundamentals of Data Structures in C, 2/e (Paperback)
-
$620$527 -
$738Digital Image Processing, 3/e (IE-Paperback)
-
$4,140$3,933 -
$780$663 -
$520$411 -
$1,460$1,431 -
$480$379 -
$580$458 -
$2,565C++ Primer, 5/e (美國原版)
-
$4,440$4,218 -
$1,490Contemporary Artificial Intelligence (Hardcover)
-
$680$578 -
$940$700 -
$3,500$3,325 -
$520$442 -
$1,050$998 -
$980$774 -
$1,872Deep Learning: A Practitioner's Approach (Paperback)
-
$3,500$3,325 -
$1,750Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Hardcover)
-
$2,080Information Theory Tools for Visualization (Hardcove)
-
$480$408
相關主題
商品描述
Machine learning methods extract value from vast data sets quickly and with modest resources. They are established tools in a wide range of industrial applications, including search engines, DNA sequencing, stock market analysis, and robot locomotion, and their use is spreading rapidly. People who know the methods have their choice of rewarding jobs. This hands-on text opens these opportunities to computer science students with modest mathematical backgrounds. It is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models. Students learn more than a menu of techniques, they develop analytical and problem-solving skills that equip them for the real world. Numerous examples and exercises, both computer based and theoretical, are included in every chapter. Resources for students and instructors, including a MATLAB toolbox, are available online.
商品描述(中文翻譯)
機器學習方法能夠快速且以有限的資源從大量數據集中提取價值。它們是廣泛應用於各種工業應用中的成熟工具,包括搜索引擎、DNA序列、股市分析和機器人運動,並且它們的使用正在迅速擴展。熟悉這些方法的人可以選擇有回報的工作。這本實踐性的教材為具有有限數學背景的計算機科學學生打開了這些機會。它專為大四本科生和碩士生設計,他們在線性代數和微積分方面的背景有限。全面而有條理,它在圖形模型的框架下從基本推理到高級技術的發展。學生不僅學習了一系列技術,還培養了分析和解決問題的能力,使他們能夠應對現實世界。每章都包含大量的例子和練習,包括計算機和理論兩方面。學生和教師的資源,包括MATLAB工具箱,可以在線上獲得。