Relational Knowledge Discovery (Lecture Notes on Machine Learning)
暫譯: 關聯知識發現(機器學習講義)
M. E. Müller
- 出版商: Cambridge
- 出版日期: 2012-07-30
- 售價: $2,380
- 貴賓價: 9.5 折 $2,261
- 語言: 英文
- 頁數: 280
- 裝訂: Paperback
- ISBN: 052112204X
- ISBN-13: 9780521122047
-
相關分類:
Machine Learning、SQL
海外代購書籍(需單獨結帳)
商品描述
What is knowledge and how is it represented? This book focuses on the idea of formalising knowledge as relations, interpreting knowledge represented in databases or logic programs as relational data and discovering new knowledge by identifying hidden and defining new relations. After a brief introduction to representational issues, the author develops a relational language for abstract machine learning problems. He then uses this language to discuss traditional methods such as clustering and decision tree induction, before moving onto two previously underestimated topics that are just coming to the fore: rough set data analysis and inductive logic programming. Its clear and precise presentation is ideal for undergraduate computer science students. The book will also interest those who study artificial intelligence or machine learning at the graduate level. Exercises are provided and each concept is introduced using the same example domain, making it easier to compare the individual properties of different approaches.
商品描述(中文翻譯)
知識是什麼,如何表示?本書專注於將知識形式化為關係的概念,將在資料庫或邏輯程式中表示的知識解釋為關聯數據,並通過識別隱藏的關係和定義新的關係來發現新知識。在簡要介紹表示問題後,作者為抽象機器學習問題開發了一種關聯語言。接著,他使用這種語言討論傳統方法,如聚類和決策樹歸納,然後轉向兩個之前被低估但現在逐漸受到重視的主題:粗集數據分析和歸納邏輯程式設計。其清晰而精確的表述非常適合本科計算機科學學生。本書也將吸引研究人工智慧或機器學習的研究生。書中提供了練習題,每個概念都使用相同的範例領域進行介紹,使得比較不同方法的個別特性變得更容易。