買這商品的人也買了...
-
$980$960 -
$1,250$1,225 -
$740$725 -
$520$468 -
$520$494 -
$1,615Introduction to Probability, 2/e (IE-Paperback)
-
$1,800$1,710 -
$1,200$1,176 -
$1,450Signals and Systems: A Primer with MATLAB (Hardcover)
-
$1,740$1,653 -
$1,323Digital Signal Processing First, 2/e (DSP First)(IE-Paerback)
-
$1,205Data Communications and Networking, 5/e (IE-Paperback)
-
$352機器視覺算法與應用 (雙語版)
-
$834$792 -
$356算法圖解 (Grokking Algorithms: An illustrated guide for programmers and other curious people)
-
$780$764 -
$375$356 -
$1,320$1,254 -
$250通信簡史:從信鴿到6G+
-
$403一本書讀懂 AIGC:ChatGPT、AI繪畫、智能文明與生產力變革
-
$311你好,ChatGPT AI ChatGPT GPT-3 GPT-4
-
$1,134$1,077 -
$556$523 -
$534$507 -
$880$695
商品描述
Description
A classroom-tested introduction to integrated and fiber opticsThis text offers an in-depth treatment of integrated and fiber optics, providing graduate students, engineers, and scientists with a solid foundation of the principles, capabilities, uses, and limitations of guided-wave optic devices and systems. In addition to the transmission properties of dielectric waveguides and optical fibers, this book covers the principles of directional couplers, guided-wave gratings, arrayed-waveguide gratings, and fiber optic polarization components.
The material is fully classroom-tested and carefully structured to help readers grasp concepts quickly and apply their knowledge to solving problems. Following an overview, including important nomenclature and notations, the text investigates three major topics:
- Integrated optics
- Fiber optics
- Pulse evolution and broadening in optical waveguides
Each chapter starts with basic principles and gradually builds to more advanced concepts and applications. Compelling reasons for including each topic are given, detailed explanations of each concept are provided, and steps for each derivation are carefully set forth. Readers learn how to solve complex problems using physical concepts and simplified mathematics.
Illustrations throughout the text aid in understanding key concepts, while problems at the end of each chapter test the readers' grasp of the material.
The author has designed the text for upper-level undergraduates, graduate students in physics and electrical and computer engineering, and scientists. Each chapter is self-contained, enabling instructors to choose a subset of topics to match their particular course needs. Researchers and practitioners can also use the text as a self-study guide to gain a better understanding of photonic and fiber optic devices and systems.
Table of Contents
Preface.1. Brief review of Electromagnetics and Guided Waves.
1.1 Introduction.
1.2 Maxwell's equations.
1.3 Uniform plane waves in isotropic media.
1.4 State of polarization.
1.5 Reflection and refraction by a planar boundary between two dielectric media.
1.5.1. Perpendicular polarization.
1.5.1.1 Reflection and refraction.
1.5.1.2 Total internal reflection.
1.5.2. Parallel polarization.
1.5.2.1 Reflection and refraction.
1.5.2.2 Total internal reflection.
1.6 Guided waves.
1.6.1 TE modes.
1.6.2 TM modes.
1.6.3 Waveguides with constant index regions.
References.
Problems.
List of Figures.
2. Step-index Thin-film Waveguides.
2.1 Introduction.
2.2 Dispersion of step-index thin-film waveguides.
2.2.1 TE modes.
2.2.2 TM modes.
2.3 Generalized parameters.
2.3.1 a, b, c, d and V.
2.3.2 bV diagram.
2.3.3 Cutoff thickness and cutoff frequencies.
2.3.4 Number of guided modes.
2.3.5 Birefringence in thin-film waveguides.
2.4 Fields of step-index thin-film waveguides.
2.4.1 TE modes.
2.4.2 TM modes.
2.5 Cover and substrate modes.
2.6 Time-average power and confinement factors.
2.6.1 Time-average power transported by TE modes.
2.6.2 Confinement factor of TE modes.
2.6.3 Time-average power transported by TM modes.
2.7 Phase and group velocities.
References.
Problems.
List of figures.
3. Graded-index Thin-film waveguides.
3.1 Introduction.
3.2 TE modes guided by linearly graded dielectric waveguides.
3.3 Exponentially graded dielectric waveguides.
3.3.1 TE modes.
3.3.2 TM modes.
3.4 WKB method.
3.4.1 Auxiliary function.
3.4.2 Fields in the R Zone.
3.4.3 Fields in the L Zone.
3.4.4 Fields in the transition zone.
3.4.5 The constants.
3.4.6 The dispersion relation.
3.4.7 An example.
3.5 Hocker and Burns’ numerical method.
3.5.1 TE modes.
3.5.2 TM modes.
3.6 Step-index thin-film waveguides vs. graded-index dielectric waveguides.
References.
Problems.
List of figures.
4. Propagation Loss in Thin-film Waveguides.
4.1 Introduction.
4.2 Complex relative dielectric constant and complex refractive index.
4.3 Propagation loss in step-index waveguides.
4.3.1 Waveguides having weakly absorbing materials.
4.3.2 Metal-clad waveguides.
4.4 Attenuation in thick waveguides with step-index profiles.
4.5 Loss in TM0 mode.
4.6 Metal-clad waveguides with graded index profiles.
References.
Problem.
List of Figures.
5. Three-dimensional Waveguides with Rectangular Boundaries.
5.1 Fields and modes guided by rectangular waveguides.
5.2 Orders of magnitude of fields.
5.2.1 modes.
5.2.2 modes.
5.3 Marcatili's method.
5.3.1 modes.
5.3.1.1 Expressions for Hx.
5.3.1.2 Boundary conditions along horizontal boundaries, y = ±h/2, |x|
5.3.1.3 Boundary conditions along vertical boundaries, x = ±w/2, |y| 5.3.1.4 Transverse wave vector K,sub>x. 5.3.1.5 Transverse wave vector Ky.
5.3.1.6 Approximate dispersion relation.
5.3.2 modes.
5.3.3 Discussions.
5.3.4 Generalized guide index.
5.4 Effective index method.
5.4.1 A pseudo waveguide.
5.4.2 An alternate pseudo waveguide.
5.4.3 Generalized guide index.
5.5 Comparison of methods.
References.
Problems.
List of figures.
6. Optical directional couplers and their applications.
6.1 Introduction.
6.2 Qualitative description of the operation of directional couplers.
6.3 Marcatili’s improved coupled mode equations.
6.3.1 Fields of isolated waveguides.
6.3.2 Normal mode fields of the composite waveguide.
6.3.3 Marcatili’s relation.
6.3.4 Approximate normal mode fields.
6.3.5 Improved coupled mode equations.
6.3.6 Coupled mode equation in an equivalent form.
6.3.7 Coupled mode equation in an alternate form.
6.4 Directional couplers with uniform cross section and constant spacing.
6.4.1 Transfer matrix.
6.4.2 Essential characteristics of couplers with K1 = K2 = K.
6.4.3 3 dB directional couplers.
6.4.4 Directional couplers as electrically controlled optical switches.
6.4.5. Switching diagram.
6.5 Switched δβ directional couplers.
6.6 Optical directional couplers filters.
6.6.1 Directional coupler filters with identical waveguides and uniform spacing.
6.6.2 Directional coupler filters with non-identical waveguides and uniform spacing.
6.6.3 Tapered directional coupler filters.
6.7 Intensity modulators based on directional couplers.
6.7.1 Electrooptic properties of lithium niobate.
6.7.2 Dielectric waveguide with an electrooptic layer.
6.7.3 Directional coupler modulator built on a Z-cut LiNbO3 plate.
6.8 Normal mode theory of directional couplers with two waveguides.
6.9 Normal mode theory of directional couplers with three or more waveguides.
References.
Problems.
List of Figures.
7. Guided-wave Gratings.
7.1 Introduction.
7.1.1 Types of guided-wave gratings.
7.1.1.1 Static gratings.
7.1.1.2 Programmable gratings.
7.1.1.3 Moving grating.
7.1.2 Applications of guided-wave gratings.
7.1.3. Two methods for analyzing guided-wave grating problems.
7.2 Perturbation theory.
7.2.1 Waveguide perturbation.
7.2.2 Fields of perturbed waveguide.
7.2.3 Coupled mode equations and coupling coefficients.
7.2.4 Co-directional coupling.
7.2.5 Contra-directional coupling.
7.3 Coupling coefficient of a rectangular grating-an example.
7.4 Graphical representation of grating equation.
7.5 Grating reflectors.
7.5.1 Coupled mode equations.
7.5.2 Filter response of grating reflectors.
7.5.3 Bandwidth of grating reflectors.
7.6 Distributed feedback lasers.
7.6.1 Coupled mode equations with optical gain.
7.6.2 Boundary conditions and symmetric condition.
7.6.3 Eigen value equations.
7.6.4 Mode patterns.
7.6.5 Oscillation frequency and threshold gain.
References.
List of Figures.
8. Arrayed-waveguide Gratings.
8.1 Introduction.
8.2 Arrays of isotropic radiators.
8.3 Two examples.
8.3.1 Arrayed-waveguide gratings as dispersive components.
8.3.2 Arrayed-waveguide gratings as focusing components.
8.4 1x2 arrayed-waveguide grating multiplexers and demultiplexers.
8.4.1 Waveguide grating elements.
8.4.2 Output waveguides.
8.4.3 Spectral response.
8.5 NxN arrayed-waveguide grating multiplexers and demultiplexers.
8.6 Applications in WDM communications.
References.
List of Figures.
9. Transmission characteristics of step-index optical fibers.
9.1. Introduction.
9.2. Fields and propagation characteristic of modes guided by step-index fibers.
9.2.1 Electromagnetic fields.
9.2.2 Characteristic equation.
9.2.3 Traditional mode designation and fields.
9.3. Linearly polarized modes guided by weakly guiding step-index fibers.
9.3.1 Basic properties of fields of weakly guiding fibers..
9.3.2 Fields and boundary conditions.
9.3.3 Characteristic equation and mode designation.
9.3.4 Fields of x-polarized LP0m modes.
9.3.5 Time-average power.
9.3.6 Single mode operation.
9.4. Phase velocity, group velocity and dispersion of linearly polarized modes.
9.4.1 Phase velocity and group velocity.
9.4.2 Dispersion.
9.4.2.1 Intermodal dispersion.
9.4.2.2 Intramodal dispersion.
9.4.2.3 Zero dispersion wavelengths.
References.
Problems.
List of Figures.
10. Input and output characteristics of weakly guiding step-index fibers.
10.1 Radiation of LP modes.
10.1.1 Radiated fields in the Fraunhofer zone.
10.1.2 Radiation by a Gaussian aperture field.
10.1.3 Experimental determination of ka and V.
10.2 Excitation of LP modes.
10.2.1 Power coupled to LP mode .
10.2.2 Gaussian beam excitation.
References.
Problems.
List of Figures.
11. Birefringence in Single-mode Fibers.
11.1 Introduction.
11.2 Geometrical birefringence.
11.3 Birefringence due to build-in stress.
11.4 Birefringence due to externally applied mechanical stress.
11.4.1 Lateral stress.
11.4.2 Bending.
11.4.2.1 Pure bending.
11.4.2.1 Bending under tension.
11.4.3 Mechanical twisting.
11.5 Birefringence due to externally applied electric and magnetic fields.
11.5.1 Strong transverse electric fields.
11.5.2 Strong axis magnetic fields.
11.6 Jones matrices of birefringent fibers.
11.6.1 Linearly birefringent fibers with stationary birefringent axes.
11.6.2 Linearly birefringent fiber with a continuous rotating axis.
11.6.3 Circularly birefringent fibers.
11.6.4 Linearly and circularly birefringent fibers.
11.6.5 Fibers with linear and circular birefringence and axis rotation.
Problems.
References.
12. Manufactured fibers.
12.1 Introduction.
12.2 Power-law index fibers.
12.3 Key propagation and dispersion parameters of graded index fibers.
12.3.1 Generalized guide index b.
12.3.2 Normalized group delay.
12.3.3 Group delay and the confinement factor.
12.3.4 Normalized waveguide dispersion.
12.3.5 An example.
12.4 Radiation and excitation characteristics of graded index fibers.
12.4.1 Radiation.
12.4.2 Excitation by a linearly polarized Gaussian beam.
12.5 Mode field radius.
12.5.1 Marcuse?s mode field radius.
12.5.2 First Petermann?s mode field radius.
12.5.3 Second Petermann?s mode field radius.
12.5.4 Comparison of three mode field radii.
12.6 Mode field radius and key propagation and dispersion parameters.
References.
Problems.
List of Figures.
13. Propagation of pulses in single-mode fibers.
13.1 Introduction.
13.2 Dispersion and group velocity dispersion.
13.3 Fourier transform method.
13.4 Propagation of Gaussian pulses in fibers.
13.4.1 Effects of? the first order group dispersion.
13.4.2 Effects of the second order group dispersion.
13.5 Impulse response.
13.5.1 Approximate impulse response function with β" ignored.
13.5.2 Approximate impulse response function with β" ignored.
13.6 Propagation of rectangular pulses in fibers.
13.7 Envelope equation.
13.7.1 Monochromatic waves.
13.7.2 Envelop equation.
13.7.3 Pulse envelop in non-dispersive media.
13.7.4 Effect of the first order group velocity dispersion.
13.7.5 Effect of the second order group velocity dispersion.
13.8 Dispersion compensation.
References.
Problems.
List of Figures.
14. Optical Solitons in Optical Fibers.
14.1 Introduction.
14.2 Optical Kerr effect in isotropic media.
14.2.1 Electric susceptibility tensor.
14.2.2 Refractive index.
14.3 Nonlinear envelope equation.
14.3.1 Linear and third-order polarizations.
14.3.2 Nonlinear envelope equation for nonlinear media.
14.3.3 Self-phase modulation.
14.3.4 Nonlinear envelope equation for nonlinear fibers.
14.3.5 Nonlinear Schrödinger equation.
14.4 Qualitative description of solitons.
14.5 Fundamental solitons.
14.5.1 Canonical expression.
14.5.2 General expression.
14.5.3 Basic soliton parameters.
14.5.4 Basic soliton properties.
14.6 Higher-order solitons.
14.6.1 Second-order solitons.
14.6.2 Third-order solitons.
14.7 Generation of solitons.
14.7.1 Integer A.
14.7.2 Non-integer A.
14.8 Soliton units of time, distance and power.
14.9 Interaction of solitons.
References.
List of Figures.
Appendix A: Brown Identity.
A.1 Wave equations for inhomogeneous media.
A.2 Brown identity.
A.3 Two special cases.
A.4 Effect of material dispersion.
References.
Appendix B: Two-dimensional Divergence Theorem and Green’s Theorem.
Appendix C. Orthogonality and Orthonormality of Guided Modes.
C.1 Lorentz’ reciprocity.
C.2 Orthogonality of guided modes.
C.3 Orthonormality of guided modes.
References.
Appendix D: Elasticity, Photoelasticity and Electrooptic Effects.
D1 Strain tensors.
D1.1 Strain tensors in one-dimensional objects.
D1.2 Strain tensors in two-dimensional objects.
D1.3 Strain tensors in three-dimensional objects.
D2 Stress tensors.
D3 Hook’s law in isotropic materials.
D4 Strain and stress tensors in abbreviated indices.
D5 Relative dielectric constant tensors and relative dielectric impermeability tensors.
D6 Photoelastic effect and photoelastic constant tensors.
D7 Index change in isotropic solids: an example.
D8 Linear electrooptic effects.
D9 Quadratic electrooptic effects.
References.
List of Figures.
Appendix E: Effect of mechanical twisting on fiber birefringence.
E1. Relative dielectric constant tensor of a twisted medium.
E2. LP modes in weakly guiding, untwisted fibers.
E3. Eigen polarization modes in twisted fibers.
References.
Appendix F: Derivation of (12.7), (12.8) and (12.9).
Appendix G: Two Hankel transform relations.
Index.
商品描述(中文翻譯)
描述
經過課堂測試的綜合光學與光纖光學入門
本書深入探討綜合光學與光纖光學,為研究生、工程師和科學家提供導波光學裝置和系統的原理、能力、用途及限制的堅實基礎。除了介電波導和光纖的傳輸特性外,本書還涵蓋了方向耦合器、導波光柵、陣列波導光柵和光纖偏振元件的原理。
本書的內容經過充分的課堂測試,結構精心設計,以幫助讀者快速掌握概念並將其知識應用於解決問題。在概述之後,包括重要的命名法和符號,本書探討了三個主要主題:
- 綜合光學
- 光纖光學
- 光學波導中的脈衝演變與展寬
每章從基本原理開始,逐步深入到更高級的概念和應用。每個主題的納入都有令人信服的理由,並提供了每個概念的詳細解釋,逐步列出每個推導的步驟。讀者學會如何使用物理概念和簡化數學來解決複雜問題。
文本中的插圖有助於理解關鍵概念,而每章結尾的問題則測試讀者對材料的掌握。
作者為高年級本科生、物理學及電機與計算機工程的研究生以及科學家設計了本書。每章都是獨立的,使得教師可以選擇一部分主題以符合其特定課程需求。研究人員和實務工作者也可以將本書作為自學指南,以更好地理解光子和光纖裝置及系統。
目錄
前言。
1. 電磁學與導波的簡要回顧。
1.1 介紹。
1.2 麥克斯韋方程。
1.3 各向同性介質中的均勻平面波。
1.4 偏振狀態。
1.5 兩種介電媒介之間的平面邊界的反射與折射。
1.5.1 垂直偏振。
1.5.1.1 反射與折射。
1.5.1.2 全內反射。
1.5.2 平行偏振。
1.5.2.1 反射與折射。
1.5.2.2 全內反射。
1.6 導波。
1.6.1 TE 模式。
1.6.2 TM 模式。
1.6.3 具有恆定折射率區域的波導。
參考文獻。
問題。
圖表清單。
2. 階梯折射率薄膜波導。
2.1 介紹。
2.2 階梯折射率薄膜波導的色散。
2.2.1 TE 模式。
2.2.2 TM 模式。
2.3 一般化參數。
2.3.1 a, b, c, d 和 V。
2.3.2 bV 圖。
2.3.3 截止厚度和截止頻率。
2.3.4 導波模式的數量。
2.3.5 薄膜波導中的雙折射。
2.4 階梯折射率薄膜波導的場。
2.4.1 TE 模式。
2.4.2 TM 模式。
2.5 覆蓋和基板模式。
2.6 時間平均功率和約束因子。
2.6.1 TE 模式傳輸的時間平均功率。
2.6.2 TE 模式的約束因子。
2.6.3 TM 模式傳輸的時間平均功率。
2.7 相速度和群速度。
參考文獻。
問題。
圖表清單。
3. 漸變折射率薄膜波導。
3.1 介紹。
3.2 由線性漸變介電波導引導的 TE 模式。
3.3 指數漸變介電波導。
3.3.1 TE 模式。
3.3.2 TM 模式。
3.4 WKB 方法。
3.4.1 輔助函數。
3.4.2 R 區域的場。
3.4.3 L 區域的場。
3.4.4 轉換區域的場。
3.4.5 常數。
3.4.6 色散關係。
3.4.7 一個例子。
3.5 Hocker 和 Burns 的數值方法。
3.5.1 TE 模式。
3.5.2 TM 模式。
3.6 階梯折射率薄膜波導與漸變折射率介電波導的比較。
參考文獻。
問題。
圖表清單。
4. 薄膜波導中的傳播損耗。
4.1 介紹。
4.2 複相對介電常數和複折射率。
4.3 階梯折射率波導中的傳播損耗。
4.3.1 具有弱吸收材料的波導。
4.3.2 金屬包覆波導。
4.4 具有階梯折射率輪廓的厚波導中的衰減。
4.5 TM0 模式中的損耗。
4.6 具有漸變折射率輪廓的金屬包覆波導。
參考文獻。
問題。
圖表清單。
5. 具有矩形邊界的三維波導。
5.1 由矩形波導引導的場和模式。
5.2 場的量級。
5.2.1 模式。
5.2.2 模式。
5.3 Marcatili 方法。
5.3.1 模式。
5.3.1.1 Hx 的表達式。
5.3.1.2 沿水平邊界的邊界條件,y = ±h/2, |x| 5.3.1.3 沿垂直邊界的邊界條件,x = ±w/2, |y|
5.3.1.4 橫向波向量 Kx。
5.3.1.5 橫向波向量 Ky。
5.3.1.6 近似色散關係。
5.3.2 模式。
5.3.3 討論。
5.3.4 一般化導引指數。
5.4 有效指數方法。
5.4.1 一個假波導。
5.4.2 另一個假波導。
5.4.3 一般化導引指數。
5.5 方法比較。
參考文獻。
問題。
圖表清單。
6. 光學方向耦合器及其應用。
6.1 介紹。
6.2 方向耦合器操作的定性描述。
6.3 Marcatili 改進的耦合模式方程。
6.3.1 獨立波導的場。
6.3.2 複合波導的正常模式場。
6.3.3 Marcatili 的關係。
6.3.4 近似正常模式場。
6.3.5 改進的耦合模式方程。
6.3.6 等效形式的耦合模式方程。
6.3.7 替代形式的耦合模式方程。
6.4 具有均勻橫截面和恆定間距的方向耦合器。
6.4.1 傳遞矩陣。
6.4.2 具有 K1 = K2 = K 的耦合器的基本特徵。
6.4.3 3 dB 方向耦合器。
6.4.4 作為電控光開關的方向耦合器。
6.4.5 切換圖。
6.5 切換 δβ 方向耦合器。
6.6 光學方向耦合器濾波器。
6.6.1 具有相同波導和均勻間距的方向耦合器濾波器。
6.6.2 具有不同波導和均勻間距的方向耦合器濾波器。
6.6.3 錐形方向耦合器濾波器。
6.7 基於方向耦合器的強度調製器。
6.7.1 鋰鈮酸鹽的電光特性。
6.7.2 具有電光層的介電波導。
6.7.3 建立在 Z 切 LiNbO3 板上的方向耦合器調製器。
6.8 具有兩個波導的方向耦合器的正常模式理論。
6.9 具有三個或更多波導的方向耦合器的正常模式理論。
參考文獻。
問題。
圖表清單。
7. 導波光柵。
7.1 介紹。
7.1.1 導波光柵的類型。
7.1.1.1 靜態光柵。
7.1.1.2 可編程光柵。
7.1.1.3 移動光柵。
7.1.2 導波光柵的應用。
7.1.3 兩種分析導波光柵問題的方法。
7.2 擾動理論。
7.2.1 波導擾動。
7.2.2 擾動波導的場。
7.2.3 耦合模式方程和耦合係數。
7.2.4 同向耦合。
7.2.5 反向耦合。
7.3 矩形光柵的耦合係數—一個例子。
7.4 光柵方程的圖形表示。
7.5 光柵反射器。
7.5.1 耦合模式方程。
7.5.2 光柵反射器的濾波響應。
7.5.3 光柵反射器的帶寬。
7.6 分佈反饋激光器。
7.6.1 具有光增益的耦合模式方程。
7.6.2 邊界條件和對稱條件。
7.6.3 特徵值方程。
7.6.4 模式圖案。
7.6.5 振盪頻率和閾值增益。
參考文獻。
圖表清單。
8. 陣列波導光柵。
8.1 介紹。
8.2 各向同性輻射器的陣列。
8.3 兩個例子。
8.3.1 陣列波導光柵作為色散元件。
8.3.2 陣列波導光柵作為聚焦元件。
8.4 1x2 陣列波導光柵多路復用器和解多路復用器。
8.4.1 波導光柵元件。
8.4.2 輸出波導。
8.4.3 光譜響應。
8.5 NxN 陣列波導光柵多路復用器和解多路復用器。
8.6 在 WDM 通信中的應用。
參考文獻。
圖表清單。
9. 階梯折射率光纖的傳輸特性。
9.1 介紹。
9.2 由階梯折射率光纖引導的模式的場和傳播特性。
9.2.1 電磁場。
9.2.2 特徵方程。
9.2.3 傳統模式指定和場。
9.3 由弱導引階梯折射率光纖引導的線性偏振模式。
9.3.1 弱導引光纖場的基本特性。
9.3.2 場和邊界條件。
9.3.3 特徵方程和模式指定。
9.3.4 x 偏振 LP0m 模式的場。
9.3.5 時間平均功率。
9.3.6 單模操作。
9.4 相速度、群速度和線性偏振模式的色散。
9.4.1 相速度和群速度。
9.4.2 色散。
9.4.2.1 模間色散。
9.4.2.2 模內色散。
9.4.2.3 零色散波長。
參考文獻。
問題。
圖表清單。
10. 弱導引階梯折射率光纖的輸入和輸出特性。
10.1 LP 模式的輻射。
10.1.1 在弗朗霍夫區的輻射場。
10.1.2 由高斯孔徑場輻射。
10.1.3 ka 和 V 的實驗確定。
10.2 LP 模式的激發。
10.2.1 耦合到 LP 模式的功率。
10.2.2 高斯光束激發。
參考文獻。
問題。
圖表清單。
11. 單模光纖中的雙折射。
11.1 介紹。
11.2 幾何雙折射。
11.3 由內部應力引起的雙折射。
11.4 由外部施加的機械應力引起的雙折射。
11.4.1 橫向應力。
11.4.2 彎曲。