Introduction to Time Series Analysis and Forecasting (Hardcover)
暫譯: 時間序列分析與預測入門 (精裝版)
Douglas C. Montgomery, Cheryl L. Jennings, Murat Kulahci
- 出版商: Wiley
- 出版日期: 2008-03-01
- 售價: $5,510
- 貴賓價: 9.5 折 $5,235
- 語言: 英文
- 頁數: 472
- 裝訂: Hardcover
- ISBN: 0471653977
- ISBN-13: 9780471653974
已過版
買這商品的人也買了...
-
$1,150$1,127 -
$2,050$1,948 -
$680$646 -
$620$490 -
$650$553 -
$600$474 -
$650$514 -
$1,225MCTS Self-Paced Training Kit (Exam 70-529): Microsoft .NET Framework 2.0 Distributed Application Development
-
$650$553 -
$720$612 -
$990$891 -
$600$480 -
$540$513 -
$1,590$1,511 -
$490$417 -
$580$458 -
$490$417 -
$480$374 -
$780$616 -
$590$460 -
$800$632 -
$690$587 -
$330$261 -
$780$616 -
$580$458
商品描述
Analyzing time-oriented data and forecasting are among the most important problems that analysts face across many fields, ranging from finance and economics to production operations and the natural sciences. As a result, there is a widespread need for large groups of people in a variety of fields to understand the basic concepts of time series analysis and forecasting. Introduction to Time Series Analysis and Forecasting presents the time series analysis branch of applied statistics as the underlying methodology for developing practical forecasts, and it also bridges the gap between theory and practice by equipping readers with the tools needed to analyze time-oriented data and construct useful, short- to medium-term, statistically based forecasts.
Seven easy-to-follow chapters provide intuitive explanations and in-depth coverage of key forecasting topics, including:
Regression-based methods, heuristic smoothing methods, and general time series models
Basic statistical tools used in analyzing time series data
Metrics for evaluating forecast errors and methods for evaluating and tracking forecasting performance over time
Cross-section and time series regression data, least squares and maximum likelihood model fitting, model adequacy checking, prediction intervals, and weighted and generalized least squares
Exponential smoothing techniques for time series with polynomial components and seasonal data
Forecasting and prediction interval construction with a discussion on transfer function models as well as intervention modeling and analysis
Multivariate time series problems, ARCH and GARCH models, and combinations of forecasts
The ARIMA model approach with a discussion on how to identify and fit these models for non-seasonal and seasonal time series
The intricate role of computer software in successful time series analysis is acknowledged with the use of Minitab, JMP, and SAS software applications, which illustrate how the methods are imple-mented in practice. An extensive FTP site is available for readers to obtain data sets, Microsoft Office PowerPoint slides, and selected answers to problems in the book. Requiring only a basic working knowledge of statistics and complete with exercises at the end of each chapter as well as examples from a wide array of fields, Introduction to Time Series Analysis and Forecasting is an ideal text for forecasting and time series courses at the advanced undergraduate and beginning graduate levels. The book also serves as an indispensable reference for practitioners in business, economics, engineering, statistics, mathematics, and the social, environmental, and life sciences.
商品描述(中文翻譯)
一本易於理解的介紹,涵蓋了在時間導向數據背景下,預測技術的最新思維與實用性。
分析時間導向數據和預測是分析師在許多領域面臨的最重要問題之一,這些領域包括金融、經濟、製造運營和自然科學。因此,各個領域的大量人員都需要理解時間序列分析和預測的基本概念。《時間序列分析與預測導論》將應用統計學中的時間序列分析分支作為開發實用預測的基本方法,並通過提供讀者所需的工具來分析時間導向數據和構建有用的短期至中期統計預測,彌合了理論與實踐之間的鴻溝。
七個易於跟隨的章節提供了直觀的解釋和對關鍵預測主題的深入探討,包括:
- 基於回歸的方法、啟發式平滑方法和一般時間序列模型
- 用於分析時間序列數據的基本統計工具
- 評估預測誤差的指標以及隨時間評估和跟蹤預測表現的方法
- 橫斷面和時間序列回歸數據、最小二乘法和最大似然模型擬合、模型適用性檢查、預測區間,以及加權和廣義最小二乘法
- 針對具有多項式成分和季節性數據的時間序列的指數平滑技術
- 預測和預測區間的構建,並討論轉移函數模型以及干預建模和分析
- 多變量時間序列問題、ARCH和GARCH模型,以及預測的組合
**ARIMA模型方法,並討論如何識別和擬合這些非季節性和季節性時間序列模型**
在成功的時間序列分析中,計算機軟體的複雜角色得到了認可,使用了Minitab、JMP和SAS等軟體應用,這些應用展示了方法在實踐中的實施。讀者可以訪問一個廣泛的FTP網站,以獲取數據集、Microsoft Office PowerPoint幻燈片以及書中問題的選定答案。《時間序列分析與預測導論》僅需具備基本的統計學知識,並在每章結尾附有練習題以及來自各個領域的範例,是高級本科生和初級研究生預測及時間序列課程的理想教材。該書同時也是商業、經濟、工程、統計學、數學以及社會、環境和生命科學領域從業者不可或缺的參考資料。