Risk Assessment For Power Systems: Models, Methods, And Applications
暫譯: 電力系統風險評估:模型、方法與應用

Wenyuan Li

  • 出版商: Wiley
  • 出版日期: 2004-12-17
  • 售價: $5,750
  • 貴賓價: 9.5$5,463
  • 語言: 英文
  • 頁數: 344
  • 裝訂: Hardcover
  • ISBN: 047163168X
  • ISBN-13: 9780471631682
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Description:

Learn how to evaluate, forecast, and manage the risk of power system failures

Risk Assessment of Power Systems closes the gap between risk theory and real-world application. As a leading authority in power system risk evaluation for more than fifteen years and the author of a considerable number of papers and more than fifty technical reports on power system risk and reliability evaluation, Wenyuan Li is uniquely qualified to present this material. Following the models and methods developed from the author's hands-on experience, readers learn how to evaluate power system risk in planning, design, operations, and maintenance activities to keep risk at targeted levels.

The book's expert guidance and real-life examples enable readers to master even the most complex aspects of power system risk assessment, including:

  • How to choose the component outage models that best reflect actual circumstances
  • How to deal with uncertainty in statistical data
  • How to select the appropriate risk evaluation methods to fit a specific case
  • How to apply fundamentals and methodologies to each individual engineering issue

The book begins with a general introduction to concepts in power system risk, including system risk evaluation, data in risk evaluation, and unit interruption cost. Next, a thorough discussion of modeling and methodology is provided, including outage models of components and state enumeration techniques and Monte Carlo simulation methods for system risk assessment. The author then focuses on practical applications that reflect actual issues facing the utility industry. The application examples provided are based on the author's hands-on field experience. Finally, five appendices contain additional materials—mathematical elements, power system models, and probability distribution tables needed in power system risk assessment.

The consequences of power system failure have wide-ranging economic, environmental, and safety implications. With so much at stake, this book is essential reading for all engineers and managers in electric utilities who are tasked with system planning, operations, maintenance, and asset management. In addition, by bridging the gap between theory and application, this is an excellent graduate-level textbook for courses in power systems that will help students understand how risk theory is applied in the workplace.

 

Table of Contents:

Preface.

1 Introduction.

1.1 Risk in Power Systems.

1.2 Basic Concepts of Power System Risk Assessment.

1.3 Outline of the Book.

2 Outage Models of System Components.

2.1 Introduction.

2.2 Models of Independent Outages.

2.3 Models of Dependent Outages.

2.4 Conclusions.

3 Parameter Estimation in Outage Models.

3.1 Introduction.

3.2 Point Estimation of Mean and Variance of Failure Data.

3.3 Interval Estimation of Mean and Variance of Failure Data.

3.4 Estimating Failure Frequency of Individual Components.

3.5 Estimating Probability from a Binomial Distribution.

3.6 Experimental Distribution of Failure Data and Its Test.

3.7 Estimating Parameters in Aging Failure Models.

3.8 Conclusions.

4 Elements of Risk Evaluation Methods.

4.1 Introduction.

4.2 Methods for Simple Systems.

4.3 Methods for Complex Systems.

4.4. Conclusions.

5 Risk Evaluation Techniques for Power Systems.

5.1 Introduction.

5.2 Techniques Used in Generation-Demand Systems.

5.3 Techniques Used in Radial Distribution Systems.

5.4 Techniques Used in Substation Configurations.

5.5 Techniques Used in Composite Generation and Transmission Systems.

5.6 Conclusions.

6 Application of Risk Evaluation to Transmission Development Planning.

6.1 Introduction.

6.2 Concept of Probabilistic Planning.

6.3 Risk Evaluation Approach.

6.4 Example 1: Selecting the Lowest-Cost Planning Alternative.

6.5 Example 2: Applying Different Planning Criteria.

6.6 Conclusions.

7 Application of Risk Evaluation to Transmission Operation Planning.

7.1 Introduction.

7.2 Concept of Risk Evaluation in Operation Planning.

7.3 Risk Evaluation Method.

7.4 Example 1: Determining the Lowest-Risk Operation Mode.

7.5 Example 2: A Simple Case by Hand Calculations.

7.6 Conclusions.

8 Application of Risk Evaluation to Generation Source Planning.

8.1 Introduction.

8.2 Procedure for Reliability Planning.

8.3 Simulation of Generation and Risk Costs.

8.4 Example 1: Selecting Location and Size of Cogenerators.

8.5 Example 2: Making a Decision to Retire a Local Generation Plant.

8.6 Conclusions.

9 Selection of Substation Configurations.

9.1 Introduction.

9.2 Load Curtailment Model.

9.3 Risk Evaluation Approach.

9.4 Example 1: Selecting Substation Configuration.

9.5 Example 2: Selecting Transmission Line Arrangement Associated with Substations.

9.6 Conclusions.

10 Reliability-Centered Maintenance.

10.1 Introduction.

10.2 Basic Tasks in RCM.

10.3 Example 1: Transmission Maintenance Scheduling.

10.4 Example 2: Workforce Planning in Maintenance.

10.5 Example 3: A Simple Case Performed by Hand Calculations.

10.6 Conclusions.

11 Probabilistic Spare-Equipment Analysis.

11.1 Introduction.

11.2 Spare-Equipment Analysis Based on Reliability Criteria.

11.3 Spare-Equipment Analysis Using the Probabilistic Cost Method.

11.4 Example 1: Determining Number and Timing of Spare Transformers.

11.5 Example 2: Determining Redundancy Level of 500 kV Reactors.

11.6 Conclusions.

12 Reliability-Based Transmission-Service Pricing.

12.1 Introduction.

12.2 Basic Concept.

12.3 Calculation Methods.

12.4 Rate Design.

12.5 Application Example.

12.6 Conclusions.

13 Probabilistic Transient Stability Assessment.

13.1 Introduction.

13.2 Probabilistic Modeling and Simulation Methods.

13.3 Procedure.

13.4 Examples.

13.5 Conclusions.

Appendix A Basic Probability Concepts.

A.1 Probability Calculation Rules.

A.2 Random Variable and its Distribution.

A.3 Important Distributions in Risk Evaluation.

A.4 Numerical Characteristics.

Appendix B Elements of Monte Carlo Simulation.

B.1 General Concept.

B.2 Random Number Generators.

B.3 Inverse Transform Method of Generating Random Variates.

B.4 Important Random Variates in Risk Evaluation.

Appendix C Power-Flow Models.

C.1 AC Power-Flow Models.

C.2 DC Power-Flow Models.

Appendix D Optimization Algorithms.

D.1 Simplex Methods for Linear Programming.

D.2 Interior Point Method for Nonlinear Programming.

Appendix E Three Probability Distribution Tables.

References.

Index.

About the Author.

商品描述(中文翻譯)

描述:
學習如何評估、預測和管理電力系統故障的風險。《電力系統風險評估》彌補了風險理論與實際應用之間的差距。作為電力系統風險評估的領先權威,Wenyuan Li 在這一領域已有超過十五年的經驗,並且是多篇論文和五十多份技術報告的作者,專注於電力系統的風險和可靠性評估,因此他具備獨特的資格來呈現這些材料。根據作者的實務經驗所發展的模型和方法,讀者將學會如何在規劃、設計、運營和維護活動中評估電力系統風險,以保持風險在目標水平。

本書的專家指導和實際案例使讀者能夠掌握電力系統風險評估中最複雜的方面,包括:
- 如何選擇最能反映實際情況的元件停運模型
- 如何處理統計數據中的不確定性
- 如何選擇適合特定案例的風險評估方法
- 如何將基本原則和方法應用於每個單獨的工程問題

本書首先對電力系統風險的概念進行一般介紹,包括系統風險評估、風險評估中的數據和單位中斷成本。接下來,提供了對建模和方法論的徹底討論,包括元件的停運模型、狀態枚舉技術和蒙地卡羅模擬方法,用於系統風險評估。作者然後專注於反映公用事業行業面臨的實際問題的實用應用。所提供的應用案例基於作者的實地經驗。最後,五個附錄包含額外材料——數學元素、電力系統模型和在電力系統風險評估中所需的概率分佈表。

電力系統故障的後果具有廣泛的經濟、環境和安全影響。考慮到如此多的利害關係,本書對於所有負責系統規劃、運營、維護和資產管理的電力工程師和管理人員來說都是必讀之作。此外,通過彌補理論與應用之間的差距,這本書也是一部優秀的研究生級教科書,適用於電力系統課程,幫助學生理解風險理論如何在工作場所中應用。

目錄:
前言。
1 介紹。
1.1 電力系統中的風險。
1.2 電力系統風險評估的基本概念。
1.3 本書大綱。
2 系統元件的停運模型。
2.1 介紹。
2.2 獨立停運模型。
2.3 依賴停運模型。
2.4 結論。
3 停運模型中的參數估計。
3.1 介紹。
3.2 故障數據的均值和方差的點估計。
3.3 故障數據的均值和方差的區間估計。
3.4 單個元件的故障頻率估計。
3.5 從二項分佈估計概率。
3.6 故障數據的實驗分佈及其檢驗。
3.7 在老化故障模型中估計參數。
3.8 結論。
4 風險評估方法的要素。
4.1 介紹。
4.2 簡單系統的方法。
4.3 複雜系統的方法。
4.4 結論。
5 電力系統的風險評估技術。
5.1 介紹。
5.2 在發電-需求系統中使用的技術。
5.3 在放射狀配電系統中使用的技術。
5.4 在變電站配置中使用的技術。
5.5 在綜合發電和傳輸系統中使用的技術。
5.6 結論。
6 將風險評估應用於傳輸發展規劃。
6.1 介紹。
6.2 概率規劃的概念。
6.3 風險評估方法。
6.4 範例1:選擇最低成本的規劃替代方案。
6.5 範例2:應用不同的規劃標準。
6.6 結論。
7 將風險評估應用於傳輸運營規劃。
7.1 介紹。
7.2 運營規劃中的風險評估概念。
7.3 風險評估方法。
7.4 範例1:確定最低風險的運營模式。
7.5 範例2:通過手動計算的簡單案例。
7.6 結論。
8 將風險評估應用於發電源規劃。
8.1 介紹。
8.2 可靠性規劃的程序。
8.3 發電和風險成本的模擬。
8.4 範例1:選擇聯合發電機的地點和大小。
8.5 範例2:決定退役本地發電廠。
8.6 結論。
9 變電站配置的選擇。
9.1 介紹。
9.2 負載削減模型。
9.3 風險評估方法。
9.4 範例1:選擇變電站配置。
9.5 範例2:選擇與變電站相關的傳輸線佈局。
9.6 結論。
10 以可靠性為中心的維護。
10.1 介紹。
10.2 RCM中的基本任務。
10.3 範例1:傳輸維護排程。
10.4 範例2:維護中的人力規劃。
10.5 範例3:通過手動計算執行的簡單案例。
10.6 結論。
11 概率備用設備分析。
11.1 介紹。
11.2 基於可靠性標準的備用設備分析。
11.3 使用概率成本法的備用設備分析。
11.4 範例1:確定備用變壓器的數量和時機。
11.5 範例2:確定500 kV 反應器的冗餘水平。
11.6 結論。
12 基於可靠性的傳輸服務定價。
12.1 介紹。
12.2 基本概念。
12.3 計算方法。
12.4 費率設計。
12.5 應用範例。
12.6 結論。
13 概率瞬態穩定性評估。
13.1 介紹。
13.2 概率建模和模擬方法。
13.3 程序。
13.4 範例。
13.5 結論。
附錄A 基本概率概念。
A.1 概率計算規則。
A.2 隨機變量及其分佈。
A.3 風險評估中的重要分佈。
A.4 數值特徵。
附錄B 蒙地卡羅模擬的要素。
B.1 一般概念。
B.2 隨機數生成器。
B.3 生成隨機變量的反向變換法。
B.4 風險評估中的重要隨機變量。
附錄C 電力流模型。
C.1 交流電力流模型。
C.2 直流電力流模型。
附錄D 優化算法。
D.1 線性規劃的單純形法。