Geometric Data Analysis: An Empirical Approach to Dimensionality Reduction and
暫譯: 幾何數據分析:實證方法於降維與
Michael Kirby
- 出版商: Wiley
- 出版日期: 2001-01-12
- 售價: $1,007
- 語言: 英文
- 頁數: 325
- 裝訂: Hardcover
- ISBN: 0471239291
- ISBN-13: 9780471239291
-
相關分類:
Data Science
下單後立即進貨 (約5~7天)
買這商品的人也買了...
-
$7,340$6,973 -
$1,078Discrete and Combinatorial Mathematics: An Applied Introduction, 4/e (精裝)
-
$2,990$2,841 -
$780$663 -
$980$774 -
$520$406 -
$1,029Operating System Concepts, 6/e (Windows XP Update)
-
$720$569 -
$650$553 -
$1,880$1,786 -
$890$703 -
$680$537 -
$880$792 -
$690$587 -
$560$476 -
$720$569 -
$550$468 -
$750$593 -
$720$569 -
$620$490 -
$620$527 -
$780$616 -
$580$493 -
$490$382 -
$580$452
相關主題
商品描述
Data reduction is a rapidly emerging field with broad applications in essentially all fields where large data sets are collected and analyzed. Geometric Data Analysis is the first textbook to focus on the geometric approach to this problem of developing and distinguishing subspace and submanifold techniques for low-dimensional data representation. Understanding the geometrical nature of the data under investigation is presented as the key to identifying a proper reduction technique.
Focusing on the construction of dimensionality-reducing mappings to reveal important geometrical structure in the data, the sequence of chapters is carefully constructed to guide the reader from the beginnings of the subject to areas of current research activity. A detailed, and essentially self-contained, presentation of the mathematical prerequisites is included to aid readers from a broad variety of backgrounds. Other topics discussed in Geometric Data Analysis include:
- The Karhunen-Loeve procedure for scalar and vector fields with extensions to missing data, noisy data, and data with symmetry
- Nonlinear methods including radial basis functions (RBFs) and backpropa-gation neural networks
- Wavelets and Fourier analysis as analytical methods for data reduction
- Expansive discussion of recent research including the Whitney reduction network and adaptive bases codeveloped by the author
- And much more
The methods are developed within the context of many real-world applications involving massive data sets, including those generated by digital imaging systems and computer simulations of physical phenomena. Empirically based representations are shown to facilitate their investigation and yield insights that would otherwise elude conventional analytical tools.
商品描述(中文翻譯)
對大型數據集進行實證和幾何觀點的分析
數據減少是一個快速發展的領域,幾乎在所有收集和分析大型數據集的領域中都有廣泛的應用。《幾何數據分析》是第一本專注於幾何方法來解決低維數據表示的子空間和子流形技術的教科書。理解所研究數據的幾何特性被視為識別適當減少技術的關鍵。
本書專注於構建降維映射,以揭示數據中的重要幾何結構,章節的順序經過精心設計,旨在引導讀者從該主題的基礎知識到當前研究活動的領域。書中包含詳細且基本自足的數學前提介紹,以幫助來自各種背景的讀者。其他在《幾何數據分析》中討論的主題包括:
- Karhunen-Loeve程序,適用於標量和向量場,並擴展到缺失數據、噪聲數據和具有對稱性的數據
- 包括徑向基函數(RBFs)和反向傳播神經網絡的非線性方法
- 小波和傅立葉分析作為數據減少的分析方法
- 對最近研究的廣泛討論,包括作者共同開發的Whitney減少網絡和自適應基
- 以及更多內容
這些方法是在涉及大量數據集的許多現實應用的背景下發展的,包括由數字成像系統和物理現象的計算機模擬生成的數據。基於實證的表示被證明能促進其調查,並提供否則會被傳統分析工具忽略的見解。