Reinforcement and Systemic Machine Learning for Decision Making (Hardcover)
暫譯: 強化學習與系統性機器學習於決策制定中的應用 (精裝版)
Parag Kulkarni
- 出版商: IEEE
- 出版日期: 2012-08-14
- 售價: $3,980
- 貴賓價: 9.5 折 $3,781
- 語言: 英文
- 頁數: 312
- 裝訂: Hardcover
- ISBN: 047091999X
- ISBN-13: 9780470919996
-
相關分類:
Reinforcement
立即出貨 (庫存=1)
買這商品的人也買了...
-
深入淺出設計模式 (Head First Design Patterns)$880$695 -
C++ Primer, 4/e (中文版)$990$891 -
深入淺出 JavaScript (Head First JavaScript)$880$695 -
重構─改善既有程式的設計, 2/e (Refactoring: Improving The Design of Existing Code)$800$632 -
鳥哥的 Linux 私房菜-基礎學習篇, 3/e$820$648 -
深入淺出 Android 遊戲程式開發範例大全$620$484 -
深入 Windows 核心-Windows Internals (Windows Internals: Including Windows Server 2008 and Windows Vista, 5/e)$950$741 -
計算機組織與設計 (Computer Organization and Design: The Hardware/Software Interface, 4/e)$900$855 -
Algorithms for Reinforcement Learning (Paperback)$1,430$1,359 -
Eclipse 完全攻略-從基礎 Java 到 PDE 外掛開發$600$468 -
鳥哥的 Linux 私房菜-伺服器架設篇, 3/e$800$632 -
計算機概論, 11/e (Computer Science: An Overview, 11/e)$800$760 -
Android 4.X 手機/平板電腦程式設計入門、應用到精通, 2/e (適用 Android 1.X~4.X)$520$411 -
笑談軟體工程:敏捷開發法的逆襲-導入 Scrum,讓你的軟體開發人生從黑白變彩色!$550$435 -
2012 電腦選購與組裝維護自己來$450$356 -
JavaScript & jQuery: The Missing Manual 國際中文版, 2/e
$580$458 -
PHP 大師-寫出頂尖的程式碼 (PHP Master: Write Cutting Edge Code)$450$356 -
ASP.NET 4.5 專題實務 [I]-C# 入門實戰篇$780$616 -
超級好用 Excel 樞紐分析表─統計 X 分析 X 解讀 X 決策$420$332 -
王者歸來-C# 完全開發範例集$860$731 -
ASP.NET MVC 4 網站開發美學$680$537 -
電腦硬體裝修乙級檢定學術科, 3/e$480$379 -
雲端時代的殺手級應用:Big Data 海量資料分析$360$306 -
眼球運動視力鍛鍊-只要每天 5 分鐘,不可思議的眼肌鍛鍊法$349$297 -
透視 C語言指標-深度探索記憶體管理核心技術 (Understanding and Using C Pointers)$480$379
商品描述
Reinforcement and Systemic Machine Learning for Decision Making
There are always difficulties in making machines that learn from experience. Complete information is not always available—or it becomes available in bits and pieces over a period of time. With respect to systemic learning, there is a need to understand the impact of decisions and actions on a system over that period of time. This book takes a holistic approach to addressing that need and presents a new paradigm—creating new learning applications and, ultimately, more intelligent machines.
The first book of its kind in this new and growing field, Reinforcement and Systemic Machine Learning for Decision Making focuses on the specialized research area of machine learning and systemic machine learning. It addresses reinforcement learning and its applications, incremental machine learning, repetitive failure-correction mechanisms, and multiperspective decision making.
Chapters include:
- Introduction to Reinforcement and Systemic Machine Learning
- Fundamentals of Whole-System, Systemic, and Multiperspective Machine Learning
- Systemic Machine Learning and Model
- Inference and Information Integration
- Adaptive Learning
- Incremental Learning and Knowledge Representation
- Knowledge Augmentation: A Machine Learning Perspective
- Building a Learning System With the potential of this paradigm to become one of the more utilized in its field, professionals in the area of machine and systemic learning will find this book to be a valuable resource.
商品描述(中文翻譯)
**強化學習與系統性機器學習在決策中的應用**
在讓機器從經驗中學習的過程中,總是會遇到困難。完整的信息並不總是可用——或者它會在一段時間內逐漸顯現。關於系統性學習,需要理解決策和行動在這段時間內對系統的影響。本書採取整體性的方法來滿足這一需求,並提出了一種新的範式——創造新的學習應用,最終實現更智能的機器。
作為這一新興且不斷增長領域中的第一本專著,《強化學習與系統性機器學習在決策中的應用》專注於機器學習和系統性機器學習的專門研究領域。它探討了強化學習及其應用、增量機器學習、重複失敗修正機制以及多視角決策。
章節包括:
- 強化學習與系統性機器學習簡介
- 整體系統、系統性和多視角機器學習的基本原理
- 系統性機器學習與模型
- 推理與信息整合
- 自適應學習
- 增量學習與知識表徵
- 知識增強:機器學習的視角
- 構建一個學習系統,這一範式有潛力成為其領域中更常用的之一,機器學習和系統性學習領域的專業人士將會發現本書是一個寶貴的資源。
