Mathematical Models of Speech Technology (Hardcover)
暫譯: 語音技術的數學模型 (精裝版)
Stephen Levinson
- 出版商: Wiley
- 出版日期: 2005-03-04
- 售價: $1,007
- 語言: 英文
- 頁數: 282
- 裝訂: Hardcover
- ISBN: 0470844078
- ISBN-13: 9780470844076
下單後立即進貨 (約5~7天)
買這商品的人也買了...
-
$580$458 -
$780$616 -
$680$537 -
$990$782 -
$650$514 -
$460$363 -
$1,881Linux Device Drivers, 3/e (Paperback)
-
$180$153 -
$1,615CCNA Cisco Certified Network Associate Study Guide, 5/e (640-801)
-
$350$315 -
$620$490 -
$1,127Database System Concepts, 5/e (IE) (美國版ISBN:0072958863)
-
$880$695 -
$490$387 -
$650$514 -
$390$308 -
$890$757 -
$580$458 -
$390$351 -
$780$663 -
$550$435 -
$299$236 -
$490$387 -
$880$695 -
$490$417
商品描述
Description:
Mathematical Models of Spoken Language presents the motivations for, intuitions behind, and basic mathematical models of natural spoken language communication. A comprehensive overview is given of all aspects of the problem from the physics of speech production through the hierarchy of linguistic structure and ending with some observations on language and mind.
The author comprehensively explores the argument that these modern technologies are actually the most extensive compilations of linguistic knowledge available.Throughout the book, the emphasis is on placing all the material in a mathematically coherent and computationally tractable framework that captures linguistic structure.
It presents material that appears nowhere else and gives a unification of formalisms and perspectives used by linguists and engineers. Its unique features include a coherent nomenclature that emphasizes the deep connections amongst the diverse mathematical models and explores the methods by means of which they capture linguistic structure.
This contrasts with some of the superficial similarities described in the existing literature; the historical background and origins of the theories and models; the connections to related disciplines, e.g. artificial intelligence, automata theory and information theory; an elucidation of the current debates and their intellectual origins; many important little-known results and some original proofs of fundamental results, e.g. a geometric interpretation of parameter estimation techniques for stochastic models and finally the author's own unique perspectives on the future of this discipline.
There is a vast literature on Speech Recognition and Synthesis however, this book is unlike any other in the field. Although it appears to be a rapidly advancing field, the fundamentals have not changed in decades. Most of the results are presented in journals from which it is difficult to integrate and evaluate all of these recent ideas. Some of the fundamentals have been collected into textbooks, which give detailed descriptions of the techniques but no motivation or perspective. The linguistic texts are mostly descriptive and pictorial, lacking the mathematical and computational aspects. This book strikes a useful balance by covering a wide range of ideas in a common framework. It provides all the basic algorithms and computational techniques and an analysis and perspective, which allows one to intelligently read the latest literature and understand state-of-the-art techniques as they evolve.
Table of Contents:
Author's preface.
1 Introduction
2 Preliminaries
2.1 The physics of speech production
2.2 The source-filter model
2.3 Information-bearing features of the speech signal
2.4 Time-frequency representations
2.5 Classifications of acoustic patterns in speech
2.6 Temporal invariance and stationarity
2.7 Taxonomy of linguistic structure
3 Mathematical models of linguistic structure
3.1 Probabilistic functions of a discrete Markov process
3.2 Formal grammars and abstract automata
4 Syntactic analysis
4.1 Deterministic parsing algorithms
4.2 Probabilistic parsing algorithms
4.3 Parsing natural language
5 Grammatical inference
5.1 Exact inference and Gold's theorem
5.2 Baum's algorithm for regular grammars
5.3 Event counting in parse trees
5.4 Baker's algorithm for context-free grammars
6 Information-theoretic analysis of speech communication
6.1 The Miller et al. experiments
6.2 Entropy of an information source
6.3 Recognition error rates and entropy
7 Automatic speech recognition and constructive theories of language
7.1 Integrated architectures
7.2 Modular architectures
7.3 Parameter estimation from fluent speech
7.4 System performance
7.5 Other speech technologies
8 Automatic speech understanding and semantics
8.1 Transcription and comprehension
8.2 Limited domain semantics
8.3 The semantics of natural language
8.4 System architectures
8.5 Human and machine performance
9 Theories of mind and language
9.1 The challenge of automatic natural language understanding
9.2 Metaphors for mind
9.3 The artificial intelligence program
10 A speculation on the prospects for a science of the mind
10.1 The parable of the thermos bottle: measurements and symbols
10.2 The four questions of science
10.3 A constructive theory of the mind
10.4 The problem of consciousness
10.5 The role of sensorimotor function, associative memory and reinforcement learning in automatic acquisition of spoken language by an autonomous robot
10.6 Final thoughts: predicting the course of discovery
商品描述(中文翻譯)
**書籍描述:**
《口語語言的數學模型》介紹了自然口語交流的動機、直覺及基本數學模型。書中全面概述了從語音產生的物理學到語言結構的層次,並最終對語言與心智的一些觀察進行了探討。
作者全面探討了這些現代技術實際上是可用的最廣泛的語言知識彙編的論點。整本書的重點在於將所有材料置於一個數學上連貫且計算上可處理的框架中,以捕捉語言結構。
本書提供了在其他地方無法找到的材料,並統一了語言學家和工程師所使用的形式主義和觀點。其獨特之處在於一個連貫的命名法,強調各種數學模型之間的深層聯繫,並探討它們捕捉語言結構的方法。
這與現有文獻中描述的一些表面相似之處形成對比;包括理論和模型的歷史背景及起源;與相關學科的聯繫,例如人工智慧、自動機理論和信息理論;當前辯論及其智識來源的闡明;許多重要的鮮為人知的結果及一些基本結果的原創證明,例如隨機模型的參數估計技術的幾何解釋,最後是作者對這一學科未來的獨特觀點。
雖然有大量關於語音識別和合成的文獻,但本書在該領域中獨樹一幟。儘管這似乎是一個快速發展的領域,但基本原理幾十年來並未改變。大多數結果發表在期刊中,難以整合和評估所有這些最新的想法。一些基本原理已被收集到教科書中,這些教科書詳細描述了技術,但缺乏動機或視角。語言學文本大多是描述性和圖示性的,缺乏數學和計算方面的內容。本書通過在一個共同框架中涵蓋廣泛的想法,達到了有用的平衡。它提供了所有基本算法和計算技術,以及分析和視角,使讀者能夠智能地閱讀最新文獻並理解隨著技術演變的最先進技術。
**目錄:**
作者序。
1 引言
2 初步知識
2.1 語音產生的物理學
2.2 源-濾波器模型
2.3 語音信號的信息承載特徵
2.4 時頻表示
2.5 語音中的聲學模式分類
2.6 時間不變性和穩定性
2.7 語言結構的分類
3 語言結構的數學模型
3.1 離散馬可夫過程的概率函數
3.2 形式文法和抽象自動機
4 語法分析
4.1 確定性解析算法
4.2 機率解析算法
4.3 自然語言解析
5 文法推斷
5.1 精確推斷和Gold定理
5.2 正規文法的Baum算法
5.3 解析樹中的事件計數
5.4 上下文無關文法的Baker算法
6 語音通信的信息論分析
6.1 Miller等人的實驗
6.2 信息源的熵
6.3 識別錯誤率和熵
7 自動語音識別和語言的建構理論
7.1 整合架構
7.2 模組化架構
7.3 從流利語音中進行參數估計
7.4 系統性能
7.5 其他語音技術
8 自動語音理解和語義學
8.1 轉錄和理解
8.2 有限領域語義
8.3 自然語言的語義
8.4 系統架構
8.5 人類和機器的性能
9 心智與語言的理論
9.1 自動自然語言理解的挑戰
9.2 心智的隱喻
9.3 人工智慧計劃
10 對心智科學前景的推測
10.1 保溫瓶的寓言:測量和符號
10.2 科學的四個問題
10.3 心智的建構理論
10.4 意識的問題
10.5 感覺運動功能、聯想記憶和強化學習在自主機器人自動獲取口語語言中的角色
10.6 最後的思考:預測發現的過程