Mathematical Models of Speech Technology (Hardcover) (語音技術的數學模型)
Stephen Levinson
- 出版商: Wiley
- 出版日期: 2005-03-04
- 售價: $1,007
- 語言: 英文
- 頁數: 282
- 裝訂: Hardcover
- ISBN: 0470844078
- ISBN-13: 9780470844076
下單後立即進貨 (約5~7天)
買這商品的人也買了...
-
$580$458 -
$780$616 -
$680$537 -
$990$782 -
$650$553 -
$460$363 -
$1,881$1,782 -
$180$142 -
$1,615CCNA Cisco Certified Network Associate Study Guide, 5/e (640-801)
-
$350$315 -
$620$490 -
$1,127Database System Concepts, 5/e (IE) (美國版ISBN:0072958863)
-
$880$695 -
$490$417 -
$650$514 -
$390$332 -
$890$757 -
$580$458 -
$390$351 -
$780$663 -
$550$468 -
$299$236 -
$490$417 -
$880$695 -
$490$387
相關主題
商品描述
Description:
Mathematical Models of Spoken Language presents the motivations for, intuitions behind, and basic mathematical models of natural spoken language communication. A comprehensive overview is given of all aspects of the problem from the physics of speech production through the hierarchy of linguistic structure and ending with some observations on language and mind.
The author comprehensively explores the argument that these modern technologies are actually the most extensive compilations of linguistic knowledge available.Throughout the book, the emphasis is on placing all the material in a mathematically coherent and computationally tractable framework that captures linguistic structure.
It presents material that appears nowhere else and gives a unification of formalisms and perspectives used by linguists and engineers. Its unique features include a coherent nomenclature that emphasizes the deep connections amongst the diverse mathematical models and explores the methods by means of which they capture linguistic structure.
This contrasts with some of the superficial similarities described in the existing literature; the historical background and origins of the theories and models; the connections to related disciplines, e.g. artificial intelligence, automata theory and information theory; an elucidation of the current debates and their intellectual origins; many important little-known results and some original proofs of fundamental results, e.g. a geometric interpretation of parameter estimation techniques for stochastic models and finally the author's own unique perspectives on the future of this discipline.
There is a vast literature on Speech Recognition and Synthesis however, this book is unlike any other in the field. Although it appears to be a rapidly advancing field, the fundamentals have not changed in decades. Most of the results are presented in journals from which it is difficult to integrate and evaluate all of these recent ideas. Some of the fundamentals have been collected into textbooks, which give detailed descriptions of the techniques but no motivation or perspective. The linguistic texts are mostly descriptive and pictorial, lacking the mathematical and computational aspects. This book strikes a useful balance by covering a wide range of ideas in a common framework. It provides all the basic algorithms and computational techniques and an analysis and perspective, which allows one to intelligently read the latest literature and understand state-of-the-art techniques as they evolve.
Table of Contents:
Author's preface.
1 Introduction
2 Preliminaries
2.1 The physics of speech production
2.2 The source-filter model
2.3 Information-bearing features of the speech signal
2.4 Time-frequency representations
2.5 Classifications of acoustic patterns in speech
2.6 Temporal invariance and stationarity
2.7 Taxonomy of linguistic structure
3 Mathematical models of linguistic structure
3.1 Probabilistic functions of a discrete Markov process
3.2 Formal grammars and abstract automata
4 Syntactic analysis
4.1 Deterministic parsing algorithms
4.2 Probabilistic parsing algorithms
4.3 Parsing natural language
5 Grammatical inference
5.1 Exact inference and Gold's theorem
5.2 Baum's algorithm for regular grammars
5.3 Event counting in parse trees
5.4 Baker's algorithm for context-free grammars
6 Information-theoretic analysis of speech communication
6.1 The Miller et al. experiments
6.2 Entropy of an information source
6.3 Recognition error rates and entropy
7 Automatic speech recognition and constructive theories of language
7.1 Integrated architectures
7.2 Modular architectures
7.3 Parameter estimation from fluent speech
7.4 System performance
7.5 Other speech technologies
8 Automatic speech understanding and semantics
8.1 Transcription and comprehension
8.2 Limited domain semantics
8.3 The semantics of natural language
8.4 System architectures
8.5 Human and machine performance
9 Theories of mind and language
9.1 The challenge of automatic natural language understanding
9.2 Metaphors for mind
9.3 The artificial intelligence program
10 A speculation on the prospects for a science of the mind
10.1 The parable of the thermos bottle: measurements and symbols
10.2 The four questions of science
10.3 A constructive theory of the mind
10.4 The problem of consciousness
10.5 The role of sensorimotor function, associative memory and reinforcement learning in automatic acquisition of spoken language by an autonomous robot
10.6 Final thoughts: predicting the course of discovery
商品描述(中文翻譯)
描述:《口語語言的數學模型》介紹了自然口語溝通的動機、直覺和基本數學模型。從語音產生的物理學到語言結構的層次,最後觀察語言和思維。作者全面探討了這些現代技術實際上是可用的語言知識最廣泛的編輯。整本書強調將所有材料放在一個數學上一致且可計算的框架中,以捕捉語言結構。它提供了其他地方找不到的材料,並統一了語言學家和工程師使用的形式和觀點。其獨特之處包括一個一致的術語,強調不同數學模型之間的深層聯繫,並探索它們捕捉語言結構的方法。這與現有文獻中描述的一些表面相似之處形成對比;理論和模型的歷史背景和起源;與相關學科的聯繫,例如人工智能、自動機理論和信息理論;對當前辯論及其知識起源的闡明;許多重要但鮮為人知的結果以及一些基本結果的原始證明,例如用於隨機模型的參數估計技術的幾何解釋,最後是作者對這一學科未來的獨特觀點。有關語音識別和合成的文獻非常廣泛,但這本書與該領域中的其他書籍不同。儘管該領域似乎在迅速發展,但基本原理數十年來沒有改變。大部分結果都是在難以整合和評估所有這些最新想法的期刊中發表的。一些基本原理已經被收錄在教科書中,詳細描述了技術,但沒有動機或觀點。語言學文本大多是描述性和圖像化的,缺乏數學和計算方面。這本書在一個共同框架中涵蓋了各種想法,取得了有益的平衡。它提供了所有基本算法和計算技術,以及分析和觀點,使人能夠智能地閱讀最新的文獻並理解最新的技術發展。
目錄:
作者的前言。
1. 簡介
2. 預備知識
2.1 語音產生的物理學
2.2 源-濾波器模型
2.3 語音信號的信息特徵
2.4 時間-頻率表示
2.5 語音中的聲學模式分類
2.6 時間不變性和穩定性