Statistical Pattern Recognition, 3/e (Paperback)

Andrew R. Webb, Keith D. Copsey

買這商品的人也買了...

相關主題

商品描述

<內容簡介>

Statistical pattern recognition relates to the use of statistical techniques for analysing data measurements in order to extract information and make justified decisions. It is a very active area of study and research, which has seen many advances in recent years. Applications such as data mining, web searching, multimedia data retrieval, face recognition, and cursive handwriting recognition, all require robust and efficient pattern recognition techniques.

This third edition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields, including the areas of engineering, statistics, computer science and the social sciences. The book has been updated to cover new methods and applications, and includes a wide range of techniques such as Bayesian methods, neural networks, support vector machines, feature selection and feature reduction techniques.Technical descriptions and motivations are provided, and the techniques are illustrated using real examples.

 <章節目錄>

Preface
Notation
Ch1: Introduction to Statistical Pattern Recognition
Ch2: Density Estimation – Parametric
Ch3: Density Estimation – Bayesian
Ch4: Density Estimation – Nonparametric
Ch5: Linear Discriminant Analysis
Ch6: Nonlinear Discriminant Analysis – Kernel and Projection Methods
Ch7: Rule and Decision Tree Induction
Ch8: Ensemble Methods
Ch9: Performance Assessment
Ch10: Feature Selection and Extraction
Ch11: Clustering
Ch12: Complex Networks
Ch13: Additional Topics
References
Index


商品描述(中文翻譯)

內容簡介:

統計模式識別是指使用統計技術來分析數據測量,以提取信息並做出合理的決策。這是一個非常活躍的研究領域,在近年來取得了許多進展。數據挖掘、網絡搜索、多媒體數據檢索、人臉識別和手寫識別等應用都需要強大而高效的模式識別技術。

這本第三版介紹了統計模式理論和技術,其中的材料來自工程、統計學、計算機科學和社會科學等多個領域。本書已更新以涵蓋新的方法和應用,包括貝葉斯方法、神經網絡、支持向量機、特徵選擇和特徵降維技術。提供了技術描述和動機,並通過真實示例進行了演示。

章節目錄:

前言
符號說明
第1章:統計模式識別簡介
第2章:密度估計 - 參數化方法
第3章:密度估計 - 貝葉斯方法
第4章:密度估計 - 非參數化方法
第5章:線性判別分析
第6章:非線性判別分析 - 核方法和投影方法
第7章:規則和決策樹生成
第8章:集成方法
第9章:性能評估
第10章:特徵選擇和提取
第11章:聚類
第12章:複雜網絡
第13章:其他主題
參考文獻
索引