Software VNA and Microwave Network Design and Characterisation
暫譯: 軟體 VNA 與微波網路設計與特性化

Zhipeng Wu

  • 出版商: Wiley
  • 出版日期: 2007-06-05
  • 售價: $5,210
  • 貴賓價: 9.5$4,950
  • 語言: 英文
  • 頁數: 274
  • 裝訂: Hardcover
  • ISBN: 0470512156
  • ISBN-13: 9780470512159
  • 相關分類: 微波工程 Microwave
  • 無法訂購

買這商品的人也買了...

相關主題

商品描述

Description

Advances in computer technology and in the development of modern microwave test instruments over the past decade have given electrical engineers, researchers and university students a number of new approaches to study microwave components, devices and circuits. Vector network analyser (VNA) is a valuable tool for providing fast and accurate characterisation of microwave components and devices for other circuits working at high frequencies.

This book together with associated software serves as an introduction to microwave network analysis, microwave components and devices, and microwave circuit design. Software VNA and Microwave Network Design and Characterisation also provides both device and circuit simulators powered by the analytical formulae presented in the book. The book consists of chapters on network analysis theory and network parameters, installation and functions of the software, built-in device models, circuit design and operation principles and design examples.

The Software VNA provided with the book includes:

  • a trainer for users to gain experience of how a VNA would operate in practice.
  • Capability of accessing to the data on a commercial VNA test instrument.
  • device simulator equipped with 35 device builders from which an unlimited number of devices can be defined and studied.
  • circuit simulator that can be used to build circuits and study their properties.

Software VNA and Microwave Network Design and Characterisation is a practical guide for senior undergraduate and MSc students as well as practising engineers and researchers in the field of microwave engineering.

Table of Contents

Foreword

Preface

Chapter 1. Introduction to Network Analysis of Microwave Circuits

1.1 One-Port Network

1.1.1 Total Voltage and Current Analysis

1.1.2 Transmission-Reflection Analysis

1.1.2.1 Voltage and Current

1.1.2.2 Reflection Coefficient

1.1.2.3 Power

1.1.2.4 Introduction of a1 and b1

1.1.2.5 Z in Terms of G

1.1.3 Smith Chart

1.1.3.1 Impedance Chart

1.1.3.2 Admittance Chart

1.1.4 Terminated Transmission Line

1.2 Two-Port Network

1.2.1 Total Quantity Network Parameters

1.2.2 Determination of Z, Y and ABCD Parameters

1.2.3 Properties of Z, Y and ABCD Parameters

1.2.4 Scattering Parameters

1.2.5 Determination of S-parameters

1.2.6 Relation between a and b and Total Voltages and Currents

1.2.7 Power in Terms of a and b

1.2.8 Signal Flow Chart

1.2.9 Properties of S-parameters

1.2.10 Power Flow in a Terminated Two-Port Network

1.3 Conversions between Z, Y and ABCD and S-parameters

1.4 Single Impedance Two-port Network

1.4.1 S-parameters for Single Series Impedance

1.4.2 S-parameters for Single Shunt Impedance

1.4.3 Two-Port Chart

1.4.3.1 Single Series Impedance Network

1.4.3.2 Single Shunt Impedance Network

1.4.3.3 Scaling Property

1.4.4 Applications of the Two-Port Chart

1.4.4.1 Identification of Pure Resonance

1.4.4.2 Q-factor Measurements

1.4.4.3 Resonance with Power-Dependent Losses

1.4.4.4 Impedance or Admittance Measurement Using the Two-Port Chart

1.5 S-parameters of Common One- and Two-Port Networks

1.6 Connected Two-Port Networks

1.6.1 T-Junction

1.6.2 Cascaded Two-Port Networks

1.6.3 Two-Port Networks in Series and Parallel Connections

1.7 Scattering Matrix of Microwave Circuits Composed of Multi-port Devices

1.7.1 S-parameters of a Multi-port Device

1.7.2 S-parameters of a Microwave Circuit

Chapter 2. Introduction to Software VNA

2.1 How to Install

2.2 The Software VNA

2.3 STIMULUS Functions

2.4 PARAMETER Functions

2.5 FORMAT Functions

2.6 RESPONSE Functions

2.7 MENU Block

2.8 Summary of Unlabelled-key Functions

2.9 Preset

2.10 Device Under Test (DUT)

2.11 Circuit Simulator

2.12 Circuit Simulation Procedures and Example

 

Chapter 3. Device Builders and Models

3.1 Lossless Transmission Line

3.2 One- and Two-Port Standards

3.3 Discrete RLC Components: One-Port Impedance Load

3.4 Discrete RLC Components: Two-Port Series Impedance

3.5 Discrete RLC Components: Two-Port Shunt Admittance

3.6 General Transmission Line

3.7 Transmission Line Components: Two-Port Serial Transmission Line Stub

3.8 Transmission Line Components: Two-Port Parallel Transmission Line Stub

3.9 Ideal Two-Port Components: Attenuator/Gain Block

3.10 Ideal Two-Port Components: 1:N and N:1 Transformer

3.11 Ideal Two-Port Components: Isolator

3.12 Ideal Two-Port Components: Gyrator

3.13 Ideal Two-Port Components: Circulator

3.14 Physical Transmission Lines: Coaxial Line

3.15 Physical Transmission Lines: Microstrip Line

3.16 Physical Transmission Lines: Stripline

3.17 Physical Transmission Lines: Coplanar Waveguide

3.18 Physical Transmission Lines: Coplanar Strips

3.19 Physical Line Discontinuities: Coaxial Line Discontinuities

3.19.1 Step Discontinuity

3.19.2 Gap Discontinuity

3.19.3 Open-End Discontinuity

3.20 Physical Line Discontinuities: Microstrip Line Discontinuities

3.20.1 Step Discontinuity

3.20.2 Gap Discontinuity

3.20.3 Bend Discontinuity

3.20.4 Slit Discontinuity

3.20.5 Open-End Discontinuity  

3.21 Physical Line Discontinuities: Stripline Discontinuities

3.21.1 Step Discontinuity

3.21.2 Gap Discontinuity

3.21.3 Bend Discontinuity

3.21.4 Open-End Discontinuity 

3.22 General Coupled Lines: Four-Port Coupled Lines  

3.23 General Coupled Lines: Two-Port Coupled Lines  

3.24 Physical Coupled Lines: Four-Port Coupled Microstrip Lines  

3.25 Physical Coupled Lines: Two-Port Coupled Microstrip Lines   3.26 Lumped Elements: Inductors

3.26.1 Circular Coil 3.26.2 Circular Spiral

3.26.3 Single Turn Inductor

3.27 Lumped Elements: Capacitors

3.27.1 Thin Film Capacitor

3.27.2  Interdigital Capacitor

3.28 Lumped Elements: Resistor

3.29 Active Devices

3.30 Antennas: Dipole Antenna 

3.31 Antennas: Resonant Antenna 

3.32 Antennas: Transmission between Dipole Antennas

3.33 Antennas: Transmission between Resonant Antennas

3.34 User Defined S-Parameters: One-Port Device

3.35 User Defined S-Parameters: Two-Port Device

 

Chapter 4: Design of Microwave Circuits

4.1 Impedance Matching

4.1.1 Impedance Matching Using a Discreet Element

4.1.2 Single Stub Matching

4.1.3 Double Stub Matching

4.2 Impedance Transformers

4.2.1 Quarter Wave Transformer  

4.2.2 Chebyshev Multisection Matching Transformer

4.2.3 Corporate Feeds

4.3 Microwave Resonators

4.3.1 One-Port Directly Connected RLC Resonant Circuits

4.3.2 Two-Port Directly Connected RLC Resonant Circuits

4.3.3 One-Port Coupled Resonators

4.3.4 Two-Port Coupled Resonators

4.3.5 Transmission Line Resonators

4.3.6 Coupled Line Resonators

4.4 Power Dividers.

4.4.1 The 3dB Wilkinson Power Divider

4.4.2 The Wilkinson Power Divider with Unequal Splits

4.4.3 Alternative Design of Power Divider with Unequal Splits

4.4.4 Cohn’s Cascaded Power Divider

4.5 Couplers 

4.5.1 Two-Stub Branch Line Coupler

4.5.2 Coupler with Flat Coupling Response

4.5.3 Three-Stub Branch Line Coupler

4.5.4 Coupled Line Couplers

4.6 Hybrid Rings

4.6.1 Hybrid Ring Coupler

4.6.2 Rat-race Hybrid

4.6.3 Wideband Rat-Race Hybrid

4.6.4 Modified Hybrid Ring

4.6.5 Modified Hybrid Ring With Improved Bandwidth

4.7 Phase Shifters

4.7.1 Transmission line phase shifter

4.7.2 LC phase shifters

4.8 Filters

4.8.1 Maximally Flat Response

4.8.2 Chebyshev Response

4.8.3. Maximally Flat Lowpass Filters with w1=1

4.8.4. Chebyshev Lowpass Filters with w1=1

4.8.5 Filter Transformations

4.8.6 Step Impedance Lowpass Filters

4.8.7 Bandpass and Bandstop Filters Using  Resonators

4.8.8 Bandpass Filters Using l/4 Connecting Lines and Short-Circuited Stubs

4.8.9 Coupled Line Bandpass Filters

4.8.10 End-Coupled Resonator Filters

4.9 Amplifier Design

4.9.1 Maximum Gain Amplifier Design  

4.9.2 Broadband Amplifier Design

4.9.3 High Frequency Small Signal FET Circuit Model

4.9.4 Negative Feedback Amplifier Design

Chapter 5: Simulation of Microwave Devices and Circuits

5.1 Transmission Lines

5.1.1 Terminated Transmission Line

5.1.2 Two-port Transmission Line

5.1.3 Short-Circuited Transmission Line Stub

5.1.4 Open-Circuited Transmission Line Stub

5.1.5 Periodic Transmission Line Structures

5.2 Impedance Matching

5.2.1 Matching of a Half-Wavelength Dipole Antenna Using a Discreet Element

5.2.2 Single Stub Matching of a Half-Wavelength Dipole Antenna

5.3 Impedance Transformers

5.3.1 Quarter-wave Impedance Transformer

5.3.2 Chebyshev Multi-Section Impedance Transformer

5.3.3 Corporate Feeds

5.3.4 Corporate Feeds Realised Using Microstrip Lines

5.3.5 Kuroda’s Identities

5.4 Resonators

5.4.1 One-Port RLC Series Resonant Circuit

5.4.2 Two-Port RLC Series Resonant Circuit

5.4.3 Two-Port Coupled Resonant Circuit

5.4.4 Two-Port Coupled Microstrip Line Resonator

5.4.5 Two-Port Coupled Microstrip Coupled Line Resonator

5.4.6 Two-Port Symmetrically Coupled Ring Resonator

5.4.7 Two-Port Asymmetrically Coupled Ring Resonator

5.5 Power Dividers

5.5.1 3dB Wilkinson Power Divider

5.5.2 Microstrip 3dB Wilkinson Power Divider

5.5.3 Cohn’s Cascaded 3dB Power Divider

5.6 Couplers

5.6.1 Two-Stub Branch Line Coupler

5.6.2 Microstrip Two-Stub Branch Line Coupler

5.6.3 Three-Stub Branch Line Coupler

5.6.4 Coupled Line Coupler

5.6.5 Microstrip Coupled Line Coupler

5.6.6 Rat-Race Hybrid Ring Coupler

5.6.7 March’s Wideband Rat-Race Hybrid Ring Coupler

5.7 Filters

5.7.1 Maximally Flat Discrete Element Low Pass Filter

5.7.2 Equal Ripple Discrete Element Low Pass Filter  

5.7.3 Equal Ripple Discrete Element Bandpass Filter

5.7.4 Step Impedance Lowpass Filter

5.7.5 Bandpass Filter Using Quarter-wave Resonators

5.7.6 Bandpass Filter Using Quarter-wave Connecting Lines and Short-Circuited Stubs

5.7.7 Microstrip Coupled Line Filter

5.7.8 End-Coupled Microstrip Resonator Filter

5.8 Amplifier Design

5.8.1 Maximum Gain Amplifier

5.8.2 Balanced Amplifier

5.9 Wireless Transmission Systems

5.9.1 Transmission between with Two Dipoles with Matching Circuits

5.9.2 Transmission between with Two Dipoles with an Attenuator

References

Index 

商品描述(中文翻譯)

描述

過去十年來,計算機技術的進步以及現代微波測試儀器的發展,為電氣工程師、研究人員和大學生提供了多種新的方法來研究微波元件、設備和電路。向量網路分析儀(Vector Network Analyser, VNA)是一種寶貴的工具,能夠快速且準確地對微波元件和設備進行特性分析,這些元件和設備可用於其他高頻電路。

本書及其相關軟體作為微波網路分析、微波元件和設備以及微波電路設計的入門介紹。軟體 VNA 和微波網路設計與特性分析還提供了基於書中所呈現的分析公式的設備和電路模擬器。本書包含有關網路分析理論和網路參數、軟體的安裝和功能、內建設備模型、電路設計及操作原理和設計範例的章節。

本書提供的軟體 VNA 包括:

- 用於讓使用者獲得 VNA 實際操作經驗的訓練器。
- 訪問商業 VNA 測試儀器數據的能力。
- 配備 35 種設備構建器的設備模擬器,從中可以定義和研究無限數量的設備。
- 可用於構建電路並研究其特性的電路模擬器。

《軟體 VNA 和微波網路設計與特性分析》是針對高年級本科生、碩士生以及微波工程領域的實踐工程師和研究人員的實用指南。

目錄

前言

序言

第一章 微波電路網路分析介紹

1.1 單端網路

1.1.1 總電壓和電流分析

1.1.2 傳輸-反射分析

1.1.2.1 電壓和電流

1.1.2.2 反射係數

1.1.2.3 功率

1.1.2.4 a1 和 b1 的介紹

1.1.2.5 Z 以 G 表示

1.1.3 史密斯圖

1.1.3.1 阻抗圖

1.1.3.2 對導圖

1.1.4 終端傳輸線

1.2 雙端網路

1.2.1 總量網路參數

1.2.2 Z、Y 和 ABCD 參數的確定

1.2.3 Z、Y 和 ABCD 參數的特性

1.2.4 散射參數

1.2.5 S-參數的確定

1.2.6 a 和 b 與總電壓和電流的關係

1.2.7 以 a 和 b 表示的功率

1.2.8 信號流圖

1.2.9 S-參數的特性

1.2.10 在終端雙端網路中的功率流

1.3 Z、Y 和 ABCD 參數與 S-參數之間的轉換

1.4 單阻抗雙端網路

1.4.1 單串聯阻抗的 S-參數

1.4.2 單並聯阻抗的 S-參數

1.4.3 雙端圖

1.4.3.1 單串聯阻抗網路

1.4.3.2 單並聯阻抗網路

1.4.3.3 縮放特性

1.4.4 雙端圖的應用

1.4.4.1 純共振的識別

1.4.4.2 Q因子測量

1.4.4.3 具有功率依賴損耗的共振

1.4.4.4 使用雙端圖進行阻抗或導納測量

1.5 常見單端和雙端網路的 S-參數

1.6 連接的雙端網路

1.6.1 T 形接頭

1.6.2 串聯雙端網路

1.6.3 並聯和串聯連接的雙端網路

1.7 由多端設備組成的微波電路的散射矩陣

1.7.1 多端設備的 S-參數

1.7.2 微波電路的 S-參數

第二章 軟體 VNA 介紹

2.1 如何安裝

2.2 軟體 VNA

2.3 刺激函數

2.4 參數函數

2.5 格式函數

2.6 響應函數

2.7 菜單區塊

2.8 無標籤鍵函數的摘要

2.9 預設

2.10 被測設備(Device Under Test, DUT)

2.11 電路模擬器

2.12 電路模擬程序和範例

第三章 設備構建器和模型

3.1 無損傳輸線

3.2 單端和雙端標準

3.3 離散 RLC 元件:單端阻抗負載

3.4 離散 RLC 元件:雙端串聯阻抗

3.5 離散 RLC 元件:雙端並聯導納

3.6 一般傳輸線

3.7 傳輸線元件:雙端串聯傳輸線支撐

3.8 傳輸線元件:雙端並聯傳輸線支撐

3.9 理想雙端元件:衰減器/增益塊

3.10 理想雙端元件:1:N 和 N:1 變壓器

3.11 理想雙端元件:隔離器

3.12 理想雙端元件:旋轉器

3.13 理想雙端元件:循環器

3.14 物理傳輸線:同軸線

3.15 物理傳輸線:微帶線

3.16 物理傳輸線:帶狀線

3.17 物理傳輸線:共面波導

3.18 物理傳輸線:共面帶

3.19 物理線路不連續性:同軸線不連續性

3.19.1 步進不連續性

3.19.2 間隙不連續性

3.19.3 開端不連續性

3.20 物理線路不連續性:微帶線不連續性

3.20.1 步進不連續性

3.20.2 間隙不連續性

3.20.3 彎曲不連續性

3.20.4 縫隙不連續性

3.20.5 開端不連續性

3.21 物理線路不連續性:帶狀線不連續性

3.21.1 步進不連續性

3.21.2 間隙不連續性

3.21.3 彎曲不連續性

3.21.4 開端不連續性

3.22 一般耦合線:四端耦合線

3.23 一般耦合線:雙端耦合線

3.24 物理耦合線:四端耦合微帶線

3.25 物理耦合線:雙端耦合微帶線

3.26 集總元件:電感器

3.26.1 圓形線圈

3.26.2 圓形螺旋

3.26.3 單圈電感器

3.27 集總元件:電容器

3.27.1 薄膜電容器

3.27.2 互指電容器

3.28 集總元件:電阻器

3.29 主動元件

3.30 天線:偶極天線

3.31 天線:共振天線

3.32 天線:偶極天線之間的傳輸