Computational Intelligence and Feature Selection: Rough and Fuzzy Approaches
暫譯: 計算智慧與特徵選擇:粗糙與模糊方法

Richard Jensen, Qiang Shen

  • 出版商: IEEE
  • 出版日期: 2008-09-29
  • 定價: $4,600
  • 售價: 9.5$4,370
  • 語言: 英文
  • 頁數: 300
  • 裝訂: Hardcover
  • ISBN: 0470229756
  • ISBN-13: 9780470229750
  • 相關分類: 人工智慧大數據 Big-dataData Science
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

The rough and fuzzy set approaches presented here open up many new frontiers for continued research and development

Computational Intelligence and Feature Selection provides readers with the background and fundamental ideas behind Feature Selection (FS), with an emphasis on techniques based on rough and fuzzy sets. For readers who are less familiar with the subject, the book begins with an introduction to fuzzy set theory and fuzzy-rough set theory. Building on this foundation, the book provides:

  • A critical review of FS methods, with particular emphasis on their current limitations

  • Program files implementing major algorithms, together with the necessary instructions and datasets, available on a related Web site

  • Coverage of the background and fundamental ideas behind FS

  • A systematic presentation of the leading methods reviewed in a consistent algorithmic framework

  • Real-world applications with worked examples that illustrate the power and efficacy of the FS approaches covered

  • An investigation of the associated areas of FS, including rule induction and clustering methods using hybridizations of fuzzy and rough set theories

Computational Intelligence and Feature Selection is an ideal resource for advanced undergraduates, postgraduates, researchers, and professional engineers. However, its straightforward presentation of the underlying concepts makes the book meaningful to specialists and nonspecialists alike.

商品描述(中文翻譯)

這裡提出的粗糙集和模糊集方法為持續的研究與開發開啟了許多新領域

計算智慧與特徵選擇 為讀者提供了特徵選擇 (Feature Selection, FS) 的背景和基本概念,重點在於基於粗糙集和模糊集的技術。對於對該主題不太熟悉的讀者,本書首先介紹了模糊集理論和模糊-粗糙集理論。在此基礎上,本書提供了:



  • 對特徵選擇方法的批判性回顧,特別強調其當前的限制




  • 實現主要算法的程式檔案,並附上必要的說明和數據集,這些資源可在相關網站上獲得




  • 特徵選擇背後的背景和基本概念的涵蓋




  • 在一致的算法框架中系統性地呈現主要方法




  • 真實世界的應用案例,通過實例展示所涵蓋的特徵選擇方法的力量和有效性




  • 對特徵選擇相關領域的探討,包括使用模糊集和粗糙集理論的混合化的規則誘導和聚類方法



計算智慧與特徵選擇 是高年級本科生、研究生、研究人員和專業工程師的理想資源。然而,其對基本概念的簡單明瞭的呈現使得本書對專家和非專家都具有意義。