Making Sense of Data II: A Practical Guide to Data Visualization, Advanced Data Mining Methods, and Applications (Paperback)
暫譯: 數據解析 II:數據視覺化、進階數據挖掘方法與應用的實用指南(平裝本)

Glenn J. Myatt

  • 出版商: Wiley
  • 出版日期: 2009-02-03
  • 售價: $4,040
  • 貴賓價: 9.5$3,838
  • 語言: 英文
  • 頁數: 310
  • 裝訂: Paperback
  • ISBN: 0470222808
  • ISBN-13: 9780470222805
  • 相關分類: Data-miningData-visualization
  • 已過版

買這商品的人也買了...

商品描述

A hands-on guide to making valuable decisions from data using advanced data mining methods and techniques

This second installment in the Making Sense of Data series continues to explore a diverse range of commonly used approaches to making and communicating decisions from data. Delving into more technical topics, this book equips readers with advanced data mining methods that are needed to successfully translate raw data into smart decisions across various fields of research including business, engineering, finance, and the social sciences.

Following a comprehensive introduction that details how to define a problem, perform an analysis, and deploy the results, Making Sense of Data II addresses the following key techniques for advanced data analysis:

  • Data Visualization reviews principles and methods for understanding and communicating data through the use of visualization including single variables, the relationship between two or more variables, groupings in data, and dynamic approaches to interacting with data through graphical user interfaces.

  • Clustering outlines common approaches to clustering data sets and provides detailed explanations of methods for determining the distance between observations and procedures for clustering observations. Agglomerative hierarchical clustering, partitioned-based clustering, and fuzzy clustering are also discussed.

  • Predictive Analytics presents a discussion on how to build and assess models, along with a series of predictive analytics that can be used in a variety of situations including principal component analysis, multiple linear regression, discriminate analysis, logistic regression, and Naïve Bayes.

  • Applications demonstrates the current uses of data mining across a wide range of industries and features case studies that illustrate the related applications in real-world scenarios.

Each method is discussed within the context of a data mining process including defining the problem and deploying the results, and readers are provided with guidance on when and how each method should be used. The related Web site for the series (www.makingsenseofdata.com) provides a hands-on data analysis and data mining experience. Readers wishing to gain more practical experience will benefit from the tutorial section of the book in conjunction with the TraceisTM software, which is freely available online.

With its comprehensive collection of advanced data mining methods coupled with tutorials for applications in a range of fields, Making Sense of Data II is an indispensable book for courses on data analysis and data mining at the upper-undergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals who are interested in learning how to accomplish effective decision making from data and understanding if data analysis and data mining methods could help their organization.

商品描述(中文翻譯)

一本實用指南,利用先進的資料挖掘方法和技術從數據中做出有價值的決策

本書是《Making Sense of Data》系列的第二部,繼續探索一系列常用的方法來從數據中做出和傳達決策。深入探討更技術性的主題,本書為讀者提供了成功將原始數據轉化為明智決策所需的先進資料挖掘方法,涵蓋商業、工程、金融和社會科學等多個研究領域。

在詳細介紹如何定義問題、進行分析和部署結果的全面引言之後,《Making Sense of Data II》針對以下關鍵的先進數據分析技術進行了探討:

- **數據可視化** 回顧了通過可視化來理解和傳達數據的原則和方法,包括單一變數、兩個或多個變數之間的關係、數據中的分組,以及通過圖形用戶界面與數據互動的動態方法。
- **聚類** 概述了聚類數據集的常見方法,並詳細解釋了確定觀察值之間距離的方法和聚類觀察值的程序。還討論了凝聚層次聚類、基於分區的聚類和模糊聚類。
- **預測分析** 提出了如何構建和評估模型的討論,並介紹了一系列可用於各種情況的預測分析方法,包括主成分分析、多元線性回歸、判別分析、邏輯回歸和朴素貝葉斯。
- **應用** 展示了資料挖掘在各行各業中的當前應用,並提供了案例研究,說明在現實場景中的相關應用。

每種方法都在資料挖掘過程的背景下進行討論,包括定義問題和部署結果,並為讀者提供了何時以及如何使用每種方法的指導。該系列的相關網站(www.makingsenseofdata.com)提供了實用的數據分析和資料挖掘體驗。希望獲得更多實踐經驗的讀者可以利用本書的教程部分,結合免費在線提供的TraceisTM軟體。

憑藉其全面的先進資料挖掘方法集合以及在多個領域應用的教程,《Making Sense of Data II》是高年級本科生和研究生數據分析及資料挖掘課程中不可或缺的書籍。它同時也是對於希望學習如何從數據中進行有效決策並了解資料分析和資料挖掘方法是否能幫助其組織的研究人員和專業人士的寶貴參考。