Machine Learning in Bioinformatics
暫譯: 生物資訊學中的機器學習
Yanqing Zhang, Jagath C. Rajapakse
- 出版商: Wiley
- 出版日期: 2008-12-03
- 定價: $4,260
- 售價: 8.0 折 $3,408
- 語言: 英文
- 頁數: 456
- 裝訂: Hardcover
- ISBN: 0470116625
- ISBN-13: 9780470116623
-
相關分類:
Machine Learning、生物資訊 Bioinformatics
立即出貨 (庫存=1)
買這商品的人也買了...
-
$480$408 -
$690$538 -
$239$158 -
$990$891 -
$490$323 -
$600$480 -
$1,920$1,824 -
$580$458 -
$820$697 -
$380$323 -
$580$493 -
$990$782 -
$620$527 -
$780$616 -
$650$514 -
$5,178Advanced Signal Integrity for High-Speed Digital Designs (美國原版)
-
$580$383 -
$750$593 -
$500$395 -
$750$495 -
$750$495 -
$680$530 -
$780$515 -
$380$372 -
$1,200$948
相關主題
商品描述
Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization.
From an internationally recognized panel of prominent researchers in the field, Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics. Coverage includes: feature selection for genomic and proteomic data mining; comparing variable selection methods in gene selection and classification of microarray data; fuzzy gene mining; sequence-based prediction of residue-level properties in proteins; probabilistic methods for long-range features in biosequences; and much more.
Machine Learning in Bioinformatics is an indispensable resource for computer scientists, engineers, biologists, mathematicians, researchers, clinicians, physicians, and medical informaticists. It is also a valuable reference text for computer science, engineering, and biology courses at the upper undergraduate and graduate levels.
商品描述(中文翻譯)
機器學習方法及其在生物資訊學問題中的應用介紹
機器學習技術越來越多地被用來解決計算生物學和生物資訊學中的問題。新穎的計算技術用於分析高通量數據,包括序列、基因和蛋白質表達、途徑以及影像,對於理解疾病和未來的藥物發現變得至關重要。機器學習技術如馬可夫模型、支持向量機、神經網絡和圖形模型,由於其處理數據噪聲的隨機性和不確定性的能力,以及其泛化能力,在分析生命科學數據方面取得了成功。
《生物資訊學中的機器學習》匯集了來自國際知名的領域內著名研究者的觀點,整理了機器學習方法的最新進展及其在解決當代生物資訊學問題中的應用。內容涵蓋:基因組和蛋白質組數據挖掘的特徵選擇;基因選擇和微陣列數據分類中的變量選擇方法比較;模糊基因挖掘;基於序列的蛋白質殘基層級性質預測;生物序列中長程特徵的概率方法;以及更多內容。
《生物資訊學中的機器學習》是計算機科學家、工程師、生物學家、數學家、研究人員、臨床醫生、醫師和醫療資訊學家的不可或缺的資源。它也是計算機科學、工程和生物學課程在高年級本科和研究生階段的寶貴參考書籍。