Topology Control in Wireless Ad Hoc and Sensor Networks
暫譯: 無線自組網與感測器網路中的拓撲控制
Paolo Santi
- 出版商: Wiley
- 出版日期: 2005-08-01
- 定價: $1,980
- 售價: 5.0 折 $990
- 語言: 英文
- 頁數: 280
- 裝訂: Hardcover
- ISBN: 0470094532
- ISBN-13: 9780470094532
-
相關分類:
感測器 Sensor
立即出貨
買這商品的人也買了...
-
$931Wireless Information Networks
-
$650$585 -
$199$189 -
$590$460 -
$560$476 -
$880$695 -
$1,127Artificial Intelligence Illuminated (Paperback)
-
$149$149 -
$1,273Wireless Sensor Networks: An Information Processing Approach (IE-Paperback)
-
$1,520$1,444 -
$650$507 -
$980$931 -
$620$527 -
$990$842 -
$280$221 -
$680$646 -
$450$351 -
$350$231 -
$2,533Protocols and Architectures for Wireless Sensor Networks (Hardcover)
-
$580$452 -
$1,406Handbook of Sensor Networks: Algorithms and Architectures (Hardcover)
-
$750$585 -
$650$507 -
$480$456 -
$580$452
相關主題
商品描述
Description:
Topology control is fundamental to solving scalability and capacity problems in large-scale wireless ad hoc and sensor networks.
Forthcoming wireless multi-hop networks such as ad hoc and sensor networks will allow network nodes to control the communication topology by choosing their transmitting ranges. Briefly, topology control (TC) is the art of co-ordinating nodes’ decisions regarding their transmitting ranges, to generate a network with the desired features. Building an optimized network topology helps surpass the prevalent scalability and capacity problems.
Topology Control in Wireless Ad Hoc and Sensor Networks makes the case for topology control and provides an exhaustive coverage of TC techniques in wireless ad hoc and sensor networks, considering both stationary networks, to which most of the existing solutions are tailored, and mobile networks. The author introduces a new taxonomy of topology control and gives a full explication of the applications and challenges of this important topic.
Topology Control in Wireless Ad Hoc and Sensor Networks:
- Defines topology control and explains its necessity, considering both stationary and mobile networks.
- Describes the most representative TC protocols and their performance.
- Covers the critical transmitting range for stationary and mobile networks, topology optimization problems such as energy efficiency, and distributed topology control.
- Discusses implementation and ‘open issues’, including realistic models and the effect of multi-hop data traffic.
- Presents a case study on routing protocol design, to demonstrate how TC can ease the design of cooperative routing protocols.
This invaluable text will provide graduate students in Computer Science, Electrical and Computer Engineering, Applied Mathematics and Physics, researchers in the field of ad hoc networking, and professionals in wireless telecoms as well as networking system developers with a single reference resource on topology control.
Table of Contents:
About the Author.Preface.
Acknowledgments.
List of Abbreviations.
List of Figures.
List of Tables.
I: Introduction.
1. Ad Hoc and Sensor Networks.
1.1 The Future ofWireless Communication.
1.2 Challenges.
2. Modeling Ad Hoc Networks.
2.1 The Wireless Channel.
2.2 The Communication Graph.
2.3 Modeling Energy Consumption.
2.4 Mobility Models.
2.5 Asymptotic Notation.
3. Topology Control.
3.1 Motivations for Topology Control.
3.2 A Definition of Topology Control.
3.3 A Taxonomy of Topology Control.
3.4 Topology Control in the Protocol Stack.
II: The Critical Transmitting Range.
4. The CTR for Connectivity: Stationary Networks.
4.1 The CTR in Dense Networks.
4.2 The CTR in Sparse Networks.
4.3 The CTR with Different Deployment Region and Node Distribution.
4.4 Irregular Radio Coverage Area.
5. The CTR for Connectivity: Mobile Networks.
5.1 The CTR in RWPMobile Networks.
5.2 The CTR with Bounded, Obstacle-free Mobility.
6. Other Characterizations of the CTR 63
6.1 The CTR for k-connectivity.
6.2 The CTR for Connectivity with Bernoulli Nodes.
6.3 The Critical Coverage Range.
III: Topology Optimization Problems.
7. The Range Assignment Problem.
7.1 Problem Definition.
7.2 The RA Problem in One-dimensional Networks.
7.3 The RA Problem in Two- and Three-dimensional Networks.
7.4 The Symmetric Versions of the Problem.
7.5 The Energy Cost of the Optimal Range Assignment.
8. Energy-efficient Communication Topologies.
8.1 Energy-efficient Unicast.
8.2 Energy-efficient Broadcast.
IV: Distributed Topology Control.
9. Distributed Topology Control: Design Guidelines.
9.1 Ideal Features of a Topology Control Protocol.
9.2 The Quality of Information.
9.3 Logical and Physical Node Degrees.
10. Location-based Topology Control.
10.1 The R&M Protocol.
10.2 The LMST Protocol.
11. Direction-based Topology Control.
11.1 The CBTC Protocol.
11.2 The DistRNG Protocol.
12. Neighbor-based Topology Control.
12.1 The Number of Neighbors for Connectivity.
12.2 The KNeigh Protocol.
12.3 The XTC Protocol.
13. Dealing with Node Mobility.
13.1 TC Design Guidelines with Mobility.
13.2 TC in Mobile Networks: an Example.
13.3 The Effect of Mobility on the CNN.
13.4 Distributed TC in Mobile Networks: Existing Solutions.
V: Toward an Implementation of Topology Control.
14. Level-based Topology Control.
14.1 Level-based TC:Motivations.
14.2 The COMPOW Protocol.
14.3 The CLUSTERPOW Protocol.
14.4 The KNeighLev Protocol.
14.5 Comparing CLUSTERPOW and KneighLev.
15. Open Issues.
15.1 TC for Interference.
15.2 More-realistic Models.
15.3 Mobility and Topology Control.
15.4 Considering MultiHop Data Traffic.
15.5 Implementation of TC.
VI: Case Study and Appendices.
16. Case Study: TC and Cooperative Routing in Ad hoc Networks.
16.1 Cooperation in Ad hoc Networks.
16.2 Reference Application Scenario.
16.3 Modeling Routing as a Game.
16.4 A Practical Interpretation of Truthfulness.
16.5 Truthful Routing without TC.
16.6 Truthful Routing with TC.
16.7 Conclusion.
A: Elements of Graph Theory.
A.1 Basic Definitions.
A.2 Proximity Graphs.
B: Elements of Applied Probability.
Bibliography.
Index.
商品描述(中文翻譯)
描述:
拓撲控制是解決大型無線自組網和感測器網路中的可擴展性和容量問題的基礎。即將到來的無線多跳網路,如自組網和感測器網路,將允許網路節點通過選擇其傳輸範圍來控制通信拓撲。簡而言之,拓撲控制(Topology Control, TC)是協調節點對其傳輸範圍的決策,以生成具有所需特徵的網路的藝術。建立優化的網路拓撲有助於克服普遍存在的可擴展性和容量問題。
《無線自組網和感測器網路中的拓撲控制》論述了拓撲控制的重要性,並提供了無線自組網和感測器網路中TC技術的全面覆蓋,考慮了大多數現有解決方案所針對的靜態網路和移動網路。作者介紹了一種新的拓撲控制分類法,並詳細解釋了這一重要主題的應用和挑戰。
《無線自組網和感測器網路中的拓撲控制》:
- 定義拓撲控制並解釋其必要性,考慮靜態和移動網路。
- 描述最具代表性的TC協議及其性能。
- 涵蓋靜態和移動網路的關鍵傳輸範圍、拓撲優化問題(如能效)和分散式拓撲控制。
- 討論實施和“開放問題”,包括現實模型和多跳數據流量的影響。
- 提供路由協議設計的案例研究,以展示TC如何簡化合作路由協議的設計。
這本寶貴的文本將為計算機科學、電氣與計算機工程、應用數學和物理的研究生、無線自組網領域的研究人員以及無線電信和網路系統開發者提供有關拓撲控制的單一參考資源。
目錄:
關於作者。
前言。
致謝。
縮寫列表。
圖表列表。
表格列表。
I:引言。
1. 自組網和感測器網路。
1.1 無線通信的未來。
1.2 挑戰。
2. 建模自組網。
2.1 無線通道。
2.2 通信圖。
2.3 能量消耗建模。
2.4 移動模型。
2.5 漸近符號。
3. 拓撲控制。
3.1 拓撲控制的動機。
3.2 拓撲控制的定義。
3.3 拓撲控制的分類法。
3.4 協議棧中的拓撲控制。
II:關鍵傳輸範圍。
4. 連通性的CTR:靜態網路。
4.1 密集網路中的CTR。
4.2 稀疏網路中的CTR。
4.3 不同部署區域和節點分佈的CTR。
4.4 不規則的無線覆蓋區域。
5. 連通性的CTR:移動網路。
5.1 RWPMobile網路中的CTR。
5.2 有界、無障礙移動的CTR。
6. CTR的其他特徵。
6.1 k-連通性的CTR。
6.2 帶有伯努利節點的連通性CTR。
6.3 關鍵覆蓋範圍。
III:拓撲優化問題。
7. 範圍分配問題。
7.1 問題定義。
7.2 一維網路中的RA問題。
7.3 二維和三維網路中的RA問題。
7.4 問題的對稱版本。
7.5 最佳範圍分配的能量成本。
8. 能效通信拓撲。
8.1 能效單播。
8.2 能效廣播。
IV:分散式拓撲控制。
9. 分散式拓撲控制:設計指導。
9.1 拓撲控制協議的理想特徵。
9.2 信息質量。
9.3 邏輯和物理節點度數。
10. 基於位置的拓撲控制。
10.1 R&M協議。
10.2 LMST協議。
11. 基於方向的拓撲控制。
11.1 CBTC協議。
11.2 DistRNG協議。
12. 基於鄰居的拓撲控制。
12.1 連通性的鄰居數。
12.2 KNeigh協議。
12.3 XTC協議。
13. 處理節點移動性。
13.1 帶有移動性的TC設計指導。
13.2 移動網路中的TC:一個例子。
13.3 移動性對CNN的影響。
13.4 移動網路中的分散式TC:現有解決方案。
V:邁向拓撲控制的實施。
14. 基於層級的拓撲控制。
14.1 基於層級的TC:動機。
14.2 COMPOW協議。
14.3 CLUSTERPOW協議。
14.4 KNeighLev協議。
14.5 比較CLUSTERPOW和KneighLev。
15. 開放問題。
15.1 干擾的TC。
15.2 更現實的模型。
15.3 移動性和拓撲控制。
15.4 考慮多跳數據流量。
15.5 TC的實施。
VI:案例研究和附錄。
16. 案例研究:自組網中的TC和合作路由。
16.1 自組網中的合作。
16.2 參考應用場景。
16.3 將路由建模為遊戲。
16.4 真實性的實際解釋。
16.5 無TC的真實路由。
16.6 有TC的真實路由。
16.7 結論。
A:圖論的元素。
A.1 基本定義。
A.2 鄰近圖。
B:應用概率的元素。
參考文獻。
索引。