Deep Space Optical Communications
暫譯: 深空光學通信

Hamid Hemmati

  • 出版商: Wiley
  • 出版日期: 2006-04-01
  • 售價: $8,840
  • 貴賓價: 9.5$8,398
  • 語言: 英文
  • 頁數: 736
  • 裝訂: Hardcover
  • ISBN: 0470040025
  • ISBN-13: 9780470040027
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Description

A quarter century of research into deep space and near Earth optical communications

This book captures a quarter century of research and development in deep space optical communications from the Jet Propulsion Laboratory (JPL). Additionally, it presents findings from other optical communications research groups from around the world for a full perspective. Readers are brought up to date with the latest developments in optical communications technology, as well as the state of the art in component and subsystem technologies, fundamental limitations, and approaches to develop and fully exploit new technologies.

The book explores the unique requirements and technologies for deep space optical communications, including:
* Technology overview; link and system design drivers
* Atmospheric transmission, propagation, and reception issues
* Flight and ground terminal architecture and subsystems
* Future prospects and applications, including navigational tracking and light science

This is the first book to specifically address deep space optical communications. With an increasing demand for data from planetary spacecraft and other sources, it is essential reading for all optical communications, telecommunications, and system engineers, as well as technical managers in the aerospace industry. It is also recommended for graduate students interested in deep space communications. 

 

Table of Contents

Foreword.

Preface.

Acknowledgments.

Contributors.

Chapter 1 : Introduction (James R . Lesh).

1.1 Motivation for Increased Communications.

1.2 History of JPL Optical Communications Activities.

1.3 ComponentlSubsystem Technologies.

1.3.1 Laser Transmitters.

1.3.2 Spacecraft Telescopes.

1.3.3 Acquisition, Tracking. and Pointing.

1.3.4 Detectors.

1.3.5 Filters.

1.3.6 Error Correction Coding.

1.4 Flight Terminal Developments.

1.4.1 Optical Transceiver Package (OPTRANSPAC).

1.4.2 Optical Communications Demonstrator (OCD).

1.4.3 Lasercom Test and Evaluation Station (LTES).

1.4.4 X2000 Flight Terminal.

1.4.5 International Space Station Flight Terminal.

1.5 Reception System and Network Studies.

1.5.1 Ground Telescope Cost Model.

1.5.2 Deep Space Optical Reception Antenna (DSORA).

1.5.3 Deep Space Relay Satellite System (DSRSS) Studies.

1.5.4 Ground-Based Antenna Technology Study (GBATS).

1.5.5 Advanced Communications Benefits Study (ACBS).

1.5.6 Earth Orbit Optical Reception Terminal (EOORT) Study.

1.5 .7 EOORT Hybrid Study.

1.5.8 Spherical Primary Ground Telescope.

1.5.9 Space-Based versus Ground-Based Reception Trades.

1.6 Atmospheric Transmission.

1.7 Background Studies.

1.8 Analysis Tools.

1.9 System-Level Studies.

1.9.1 Venus Radar Mapping (VRM) Mission Study.

1.9.2 Synthetic Aperture Radar-C (SIR-C) Freeflyer.

1.9.3 ER-2 to Ground Study.

1.9.4 Thousand Astronomical Unit (TAU) Mission and Interstellar Mission Studies.

1.1 0 System-Level Demonstrations.

1 .1 0. 1 Galileo Optical Experiment (GOPEX).

1.10.2 Compensated Earth-Moon-Earth Retro-Reflector Laser Link (CEMERLL).

1.1 0.3 Groundlorbiter Lasercomm Demonstration (GOLD).

1.10 .4 Ground-Ground Demonstrations.

1.11 Other Telecommunication Functions.

1.11.1 Opto-Metric Navigation.

1.11.2 Light Science.

1.12 The Future.

1.12.1 Optical Communications Telescope Facility (OCTL).

1.12.2 Unmanned Aria1 Vehicle (UAVFGround Demonstration.

1.12.3 Adaptive Optics.

1.12.4 Optical Receiver and Dynamic Detector Array.

1.1 2.5 Alternate Ground-Reception Systems.

1.13 Mars Laser Communication Demonstration.

1.14 Summary of Following Chapters.

References.

Chapter 2: Link and System Design (Chien-Chung Chen).

2.1 Overview of Deep-Space Lasercom Link.

2.2 Communications Link Design.

2.2.1 Link Equation and Receive Signal Power.

2.2.2 Optical-Receiver Sensitivity.

2.2.2.1 Photon Detection Sensitivity.

2.2.2.2 Modulation Format.

2.2.2.3 Background Noise Control.

2.2.3 Link Design Trades.

2.2.3.1 Operating Wavelength.

2.2.3.2 Transmit Power and Size of Transmit and Receive Apertures.

2.2.3.3 Receiver Optical Bandwidth and Field of View versus Signal Throughput.

2.2.3.4 Modulation and Coding.

2.2.4 Communications Link Budget.

2.2.5 Link Availability Considerations.

2.2.5.1 Short-Term Data Outages.

2.2.5.2 Weather-Induced Outages.

2.2.5.3 Other Long-Term Outages.

2.2.5.4 Critical-Mission-Phase Coverage.

2.3 Beam Pointing and Tracking.

2.3.1 Downlink Beam Pointing.

2.3.1.1 Jitter Isolation and Rejection.

2.3.1.2 Precision Beam Pointing and Point Ahead.

2.3.2 Uplink Beam Pointing.

2.3.3 Pointing Acquisition.

2.4 Other Design Drivers and Considerations.

2.4.1 System Mass and Power.

2.4.2 Impact on Spacecraft Design.

2.4.3 Laser Safety.

2.5 Summary.

References.

Chapter 3: The Atmospheric Channel (Abhijit Biswas and Sabino Piazzolla).

3.1 Cloud Coverage Statistics.

3.1.1 National Climatic Data Center Data Set.

3.1.2 Single-Site and Two-Site Diversity Statistics.

3.1.3 Three-Site Diversity.

3.1.4 NCDC Analysis Conclusion.

3.1.5 Cloud Coverage Statistics by Satellite Data Observation.

3.2 Atmospheric Transmittance and Sky Radiance.

3.2.1 Atmospheric Transmittance.

3.2.2 Molecular Absorption and Scattering.

3.2.3 Aerosol Absorption and Scattering.

3.2.3.1 Atmospheric Attenuation Statistics.

3.2.4 Sky Radiance.

3.2.4.1 Sky Radiance Statistics.

3.2.5 Point Sources of Background Radiation.

3.3 Atmospheric Issues on Ground Telescope Site Selection for an Optical Deep Space Network.

3.3.1 Optical Deep Space Network.

3.3.2 Data RateJBER of a Mission.

3.3.3 Telescope Site Location.

3.3.4 Network Continuity and Peaks.

3.4 Laser Propagation Through the Turbulent Atmosphere.

3.4.1 Atmospheric Turbulence.

3.4.2 Atmospheric "Seeing" Effects.

3.4.3 Optical Scintillation or Irradiance Fluctuations.

3.4.4 Atmospheric Turbulence Induced Angle of Arrival.

References.

Chapter 4: Optical Modulation and Coding (Samuel J . Dolinar. Jon Hamkins. Bruce E . Moision and Victor A . Vilnrotter).

4.1 Introduction.

4.2 Statistical Models for the Detected Optical Field.

4.2.1 Quantum Models of the Optical Field.

4.2.1.1 Quantization of the Electric Field.

4.2.1.2 The Coherent State Representation of a Single Field Mode.

4.2.1.3 Quantum Representation of Thermal Noise.

4.2.1.4 Quantum Representation of Signal Plus Thermal Noise.

4.2.2 Statistical Models for Direct Detection.

4.2.2.1 The Poisson Channel Model for Ideal Photodetectors or Ideal PMTs.

4.2.2.2 The McIntyre-Conradi Model for APD Detectors.

4.2.2.3 The Webb, McIntyre, and Conradi Approximation to the McIntyre-Conradi Model.

4.2.2.4 The WMC Plus Gaussian Approximation.

4.2.2.5 Additive White Gaussian Noise Approximation.

4.2.3 Summary of Statistical Models.

4.3 Modulation Formats.

4.3.1 On-Off Keying (OOK).

4.3.2 Pulse-Position Modulation (PPM).

4.3.3 Differential PPM (DPPM).

4.3.4 Overlapping PPM (OPPM).

4.3.5 Wavelength Shift Keying (WSK).

4.3.6 Combined PPM and WSK.

4.4 Rate Limits Imposed by Constraints on Modulation.

4.4.1 Shannon Capacity.

4.4.1.1 Characterizing Capacity: Fixed Duration Edges.

4.4.1.2 Characterizing Capacity: Variable Duration Edges.

4.4.1.3 Characterizing Capacity: Probabilistic Characterization.

4.4.1.4 Characterizing Capacity: Energy Efficiency.

4.4.2 Constraints.

4.4.2.1 Dead Time.

4.4.2.2 Runlength.

4.4.3 Modulation Codes.

4.4.3.1 M-ary PPM with Deadtime.

4.4.3.2 M-ary DPPM with Deadtime.

4.4.3.3 Synchronous Variable-Length Codes.

4.5 Performance of Uncoded Optical Modulations.

4.5.1 Direct Detection of OOK on the Poisson Channel.

4.5.2 Direct Detection of PPM.

4.5.2.1 Poisson Channel.

4.5.2.2 AWGN Channel.

4.5.3 Direct Detection of Combined PPM and WSK.

4.5.4 Performance of Modulations Using Receivers Based on Quantum Detection Theory.

4.5.4.1 Receivers Based on Quantum Detection Theory.

4.5.4.2 Performance of Representative Modulations.

4.6 Optical Channel Capacity.

4.6.1 Capacity of the PPM Channel: General Formulas.

4.6.2 Capacity of Soft-Decision PPM: Specific Channel Models.

4.6.2.1 Poisson Channel.

4.6.2.2 AWGN Channel.

4.6.3 Hard-Decision Versus Soft-Decision Capacity.

4.6.4 Losses Due to Using PPM.

4.6.5 Capacity of the Binary Channel with Quantum Detection.

4.7 Channel Codes for Optical Modulations.

4.7.1 Reed-Solomon Codes.

4.7.2 Turbo and Turbo-Like Codes for Optical Modulations.

4.7.2.1 Parallel Concatenated (Turbo) Codes.

4.7.2.2 Serially Concatenated Codes with Iterative Decoding.

4.8 Performance of Coded Optical Modulations.

4.8.1 Parameter Selection.

4.8.2 Estimating Performance.

4.8.2.1 Reed-Solomon Codes.

4.8.2.2 Iterative Codes.

4.8.3 Achievable Data Rates Versus Average Signal Power.

References.

Chapter 5: Flight Transceiver (Hamid Hemmati. Gerardo G . Ortiz. William T . Roberts, Malcolm W . Wright, and Shinhak Lee)

5.1 Optomechanical Subsystem (Hamid Hemmati).

5.1 . 1 Introduction.

5.1.2 Optical Beam Paths.

5.1.3 Optical Design Requirements, Design Drivers, and Challenges.

5.1.4 Optical Design Drivers and Approaches.

5.1.5 Transmit-Receive-Isolation.

5.1.6 Stray-Light Control.

5.1.6.1 Operation at Small Sun Angles.

5.1.6.2 Surface Cleanliness Requirements.

5.1.7 Transmission, Alignment, and Wavefront Quality Budgets.

5.1.8 Efficient Coupling of Lasers to Obscured Telescopes.

5.1.8.1 Axicon Optical Element.

5.1.8.2 Sub-Aperture Illumination.

5.1.8.3 Prism Beam Slicer.

5.1.8.4 Beam Splitter/Combiner.

5.1.9 Structure, Materials, and Structural Analysis.

5.1.10 Use of Fiber Optics.

5.1.1 1 Star-Tracker Optics for Acquisition and Tracking.

5.1 . 12 Thermal Management.

5.1.13 Optical System Design Example.

5.1.13.1 Afocal Fore-Optics.

5.1.13.2 Receiver Channel.

5.1.13.3 Stellar Reference Channel.

5.1.13.4 Align and Transmit Channels.

5.1.13.5 Folded Layouts.

5.1.13.6 Tolerance Sensitivity Analysis.

5.1.13.7 Thermal Soak Sensitivity Analysis.

5.1.13.8 Solid Model of System.

5.2 Laser Transmitter (Hamid Hemmati).

5.2.1 Introduction.

5.2.2 Requirements and Challenges.

5.2.3 Candidate Laser Transmitter Sources.

5.2.3.1 Pulsed Laser Transmitters.

5.2.3.2 Fiber- Waveguide Amplifiers.

5.2.3.3 Bulk-Crystal Amplifiers.

5.2.3.4 Semiconductor Optical Amplifiers.

5.2.4 Lasers for Coherent Communications.

5.2.5 Laser Modulators.

5.2.6 Efficiency.

5.2.7 Laser Timing Jitter Control.

5.2.7.1 Jitter Control Options.

5.2.8 Redundancy.

5.2.9 Thermal Management.

5.3 Deep-Space Acquisition, Tracking, and Pointing (Gerardo G . Ortiz and Shinhak Lee).

5.3.1 Unique Challenges of Deep Space Optical Beam Pointing.

5.3.1.1 State-of-the-Art ATP Performance.

5.3.2 Link Overview and System Requirements.

5.3.2.1 Pointing Requirement.

5.3.2.2 Pointing-Error Budget Allocations.

5.3.3 ATP System.

5.3.3.1 Pointing Knowledge Reference Sources.

5.3.3.2 Pointing System Architecture.

5.3.3.3 Design Considerations.

5.3.4 Cooperative Beacon (Ground Laser) Tracking.

5.3.5 Noncooperative Beacon Tracking.

5.3.5.1 Earth Tracker-Visible Spectrum.

5.3.5.2 Star Tracker.

5.3.5.3 Earth Tracker-Long Wavelength Infrared Band.

5.3.6 ATP Technology Demonstrations.

5.3.6.1 Reduced Complexity ATP Architecture.

5.3.6.2 Centroiding Algorithms-Spot Model Method.

5.3.6.3 High Bandwidth, Windowing, CCD-Based Camera.

5.3.6.4 Accelerometer-Assisted Beacon Tracking.

5.4 Flight Qualification (Hamid Hemmati, William T . Roberts, and Malcolm W . Wright).

5.4.1 Introduction.

5.4.2 Approaches to Flight Qualification.

5.4.3 Flight Qualification of Electronics and Opto-Electronic Subsystem.

5.4.3.1 MIL-PRF-19500.

5.4.3.2 MIL STD 750.

5.4.3.3 MIL STD 883.

5.4.3.4 Telcordia.

5.4.3.5 NASA Electronics Parts and Packaging (NEPP).

5.4.4 Number of Test Units.

5.4.5 Space Environments.

5.4.5.1 Environmental Requirements.

5.4.5.2 Ionizing Radiation.

5.4.5.3 Vibration Environment.

5.4.5.4 Mechanical, Thermal, and Pyro Shock Environment.

5.4.5.5 Thermal Gradients Environment.

5.4.5.6 Depressurization Environment.

5.4.5.7 Electric and Magnetic Field Environment.

5.4.5.8 Outgassing.

5.4.6 Flight Qualification of Detectors.

5.4.6.1 Flight Qualification Procedures.

5.4.6.2 Detector Radiation Testing.

5.4.7 Flight Qualification of Laser Systems.

5.4.7.1 Past Laser Systems Flown in Space.

5.4.7.2 Design of Semiconductor Lasers for High Reliability Applications.

5.4.7.3 Degradation Mechanisms.

5.4.7.4 Qualification Process for Lasers.

5.4.8 Flight Qualification of Optics.

References.

Chapter 6: Earth Terminal Architectures (Keith E . Wilson, Abhijit Biswas, Andrew A . Gray, Victor A . Vilnrotter, Chi-Wung Lau. Mera Srinivasan, and William H . Farr).

6.1 Introduction (Keith E . Wilson).

6.1.1 Single-Station Downlink Reception and Uplink Transmission (Keith E . Wilson).

6.1.1.1 Introduction.

6.1.1.2 Deep-Space Optical Ground Receivers.

6.1.1.3 Mitigating Cloud Cover and Sky Background Effects at the Receiver.

6.1.1.4 Daytime Sky Background Effects.

6.1.1.5 Earth-Orbiting and Airborne Receivers.

6.1.1.6 Uplink Beacon and Command.

6.1.1.7 Techniques for Mitigating Atmospheric Effects.

6.1.1.8 Adaptive Optics.

6.1.1.9 Multiple-Beam Propagation.

6.1.1.10 Safe Laser Beam Propagation into Space.

6.1.1. I 1 Concept Validation Experiments Supporting Future Deep-Space Optical links.

6.1.1.12 Conclusion.

6.1.2 Optical-Array Receivers for Deep-Space Communication (Victor A . Vilnrotter, Chi-Wung Lau, and Meera Srinivasan).

6.1.2.1 Introduction.

6.1.2.2 The Optical-Array Receiver Concept.

6.1.2.3 Aperture-Plane Expansions.

6.1.2.4 Array Receiver Performance.

6.1.2.5 Conclusions.

6.2 Photodetectors.

6.2.1 Single-Element Detectors (Abhijit Biswas and William H . Farr).

6.2.1.1 Deep-Space Detector Requirements and Challenges.

6.2.1.2 Detector System Dependencies.

6.2.1.3 Detectors for Deep-Space Communications.

6.2.2 Focal-Plane Detector Arrays for Communication Through Turbulence (Victor A . Vilnrotter and Meera Srinivasan).

6.2.2.1 Introduction.

6.2.2.2 Optical Direct Detection with Focal-Plane Arrays.

6.2.2.3 Numerical Results.

6.2.2.4 Summary And Conclusions.

6.3 Receiver Electronics (Andrew A . Gray, Victor A . Vilnrotter, and Meera Srinivasan).

6.3.1 Introduction.

6.3.2 Introduction to Discrete-Time Demodulator Architectures.

6.3.3 Discrete-Time Synchronization and Post-Detection Filtering Overview.

6.3.3.1 Discrete-Time Post-Detection Filtering.

6.3.3.2 Slot and Symbol Synchronization and Decision Processing.

6.3.4 Discrete-Time Demodulator Variations.

6.3.5 Discrete-Time Demodulator with Time-Varying Post-Detection Filter.

6.3.6 Parallel Discrete-Time Demodulator Architectures.

6.3.7 Asynchronous Discrete-Time Processing.

6.3.8 Parallel Discrete-Time Demodulator Architectures.

6.3.8.1 Simple Example Architecture.

6.3.8.2 Performance with a Simple Optical Channel Model.

6.3.8.3 Evolved Parallel Architectures.

6.3.9 Primary System Models and Parameters.

6.3.10 Conclusion and Future Work.

References.

Chapter 7: Future Prospects and Applications (Hamid Hemmati and Abhijit Biswas).

7.1 Current and Upcoming Projects in the United States, Europe. and Japan.

7.1.1 LUCE (Laser Utilizing Communications Experiment).

7.1.2 Mars Laser-Communication Demonstrator (MLCD).

7.2 Airborne and Spaceborne Receivers.

7.2.1 Advantages of Airborne and Spaceborne Receivers.

7.2.2 Disadvantages of Airborne and Spaceborne Receivers.

7.2.3 Airborne Terminals.

7.2.3.1 Balloons.

7.2.3.2 Airships.

7.2.3.3 Airplanes.

7.2.4 Spaceborne Receiver Terminals.

7.2.5 Alternative Receiver Sites.

7.3 Light Science.

7.3.1 Light-Propagation Experiments.

7.3.2 Occultation Experiments to Probe Planetary Atmospheres, Rings. Ionospheres. Magnetic Fields. and the Interplanetary Medium.

7.3.2.1 Atmospheric Occultations.

7.3.2.2 Ring-Investigation Experiments.

7.3.3 Enhanced Knowledge of Solar-System-Object Masses and Gravitational Fields. Sizes. Shapes. and Surface Features.

7.3.3.1 Improved Knowledge of Solar-System Body Properties.

7.3.3.2 Optical Reference-Frame Ties..

7.3.4 Tests of the Fundamental Theories: General Relativity, Gravitational Waves, Unified Field Theories, Astrophysics, and Cosmology.

7.3.4.1 Tests of General Relativity and Unified Field Theories, Astrophysics, and Cosmology.

7.3.4.2 Effects of Charged Particles on Electromagnetic Wave Propagation, Including Test of I/f Hypothesis.

7.3.5 Enhanced Solar-System Ephemerides.

7.3.5.1 Science Benefits of Remote Optical Tracking: Ephemeris Improvement.

7.3.6 Applications of Coherent Laser Communications Technology.

7.4 Conclusions.

References.

商品描述(中文翻譯)

描述
這本書捕捉了來自噴射推進實驗室(JPL)在深空光學通信方面的二十五年研究與開發。此外,它還呈現了來自全球其他光學通信研究團隊的發現,以提供全面的視角。讀者將了解光學通信技術的最新發展,以及元件和子系統技術的最先進狀態、基本限制和開發及充分利用新技術的方法。
本書探討了深空光學通信的獨特需求和技術,包括:
* 技術概述;鏈路和系統設計驅動因素
* 大氣傳輸、傳播和接收問題
* 飛行和地面終端架構及子系統
* 未來前景和應用,包括導航追蹤和光科學
這是第一本專門針對深空光學通信的書籍。隨著來自行星太空船和其他來源的數據需求不斷增加,這本書對所有光學通信、電信和系統工程師,以及航空航天行業的技術經理來說都是必讀之作。它也推薦給對深空通信感興趣的研究生。

目錄
前言
序言
致謝
貢獻者
第一章:介紹(James R. Lesh)
1.1 增加通信的動機
1.2 JPL光學通信活動的歷史
1.3 元件/子系統技術
1.3.1 激光發射器
1.3.2 太空船望遠鏡
1.3.3 獲取、追蹤和指向
1.3.4 探測器
1.3.5 濾波器
1.3.6 錯誤更正編碼
1.4 飛行終端的發展
1.4.1 光學收發器包(OPTRANSPAC)
1.4.2 光學通信演示器(OCD)
1.4.3 激光通信測試和評估站(LTES)
1.4.4 X2000飛行終端
1.4.5 國際空間站飛行終端
1.5 接收系統和網絡研究
1.5.1 地面望遠鏡成本模型
1.5.2 深空光學接收天線(DSORA)
1.5.3 深空中繼衛星系統(DSRSS)研究
1.5.4 地面天線技術研究(GBATS)
1.5.5 先進通信效益研究(ACBS)
1.5.6 地球軌道光學接收終端(EOORT)研究
1.5.7 EOORT混合研究
1.5.8 球形主地面望遠鏡
1.5.9 太空基與地面基接收的權衡
1.6 大氣傳輸
1.7 背景研究
1.8 分析工具
1.9 系統級研究
1.9.1 金星雷達繪圖(VRM)任務研究
1.9.2 合成孔徑雷達-C(SIR-C)自由飛行器
1.9.3 ER-2至地面研究
1.9.4 千天文單位(TAU)任務和星際任務研究
1.10 系統級演示
1.10.1 伽利略光學實驗(GOPEX)
1.10.2 補償地球-月球-地球反射激光鏈路(CEMERLL)
1.10.3 地面/軌道激光通信演示(GOLD)
1.10.4 地面-地面演示
1.11 其他電信功能
1.11.1 光學導航
1.11.2 光科學
1.12 未來
1.12.1 光學通信望遠鏡設施(OCTL)
1.12.2 無人機/地面演示
1.12.3 自適應光學
1.12.4 光學接收器和動態探測器陣列
1.12.5 替代地面接收系統
1.13 火星激光通信演示
1.14 後續章節摘要
參考文獻
第二章:鏈路和系統設計(陳建忠)
2.1 深空激光通信鏈路概述
2.2 通信鏈路設計
2.2.1 鏈路方程和接收信號功率
2.2.2 光學接收器靈敏度
2.2.2.1 光子檢測靈敏度
2.2.2.2 調變格式
2.2.2.3 背景噪聲控制
2.2.3 鏈路設計權衡
2.2.3.1 操作波長
2.2.3.2 發射功率和發射及接收孔徑的大小
2.2.3.3 接收器光學帶寬和視場與信號通量的關係
2.2.3.4 調變和編碼
2.2.4 通信鏈路預算
2.2.5 鏈路可用性考量
2.2.5.1 短期數據中斷
2.2.5.2 天氣引起的中斷
2.2.5.3 其他長期中斷
2.2.5.4 關鍵任務階段覆蓋
2.3 光束指向和追蹤
2.3.1 下行鏈路光束指向
2.3.1.1 顫動隔離和拒絕
2.3.1.2 精確光束指向和預指向
2.3.2 上行鏈路光束指向
2.3.3 指向獲取
2.4 其他設計驅動因素和考量
2.4.1 系統質量和功率
2.4.2 對太空船設計的影響
2.4.3 激光安全
2.5 總結
參考文獻
第三章:大氣通道(Abhijit Biswas 和 Sabino Piazzolla)
3.1 雲層覆蓋統計
3.1.1 國家氣候數據中心數據集
3.1.2 單站和雙站多樣性統計
3.1.3 三站多樣性
3.1.4 NCDC分析結論
3.1.5 通過衛星數據觀測的雲層覆蓋統計
3.2 大氣透過率和天空輻射
3.2.1 大氣透過率
3.2.2 分子吸收和散射
3.2.3 氣溶膠吸收和散射
3.2.3.1 大氣衰減統計
3.2.4 天空輻射
3.2.4.1 天空輻射統計
3.2.5 背景輻射的點源
3.3 光學深空網絡的地面望遠鏡選址的大氣問題
3.3.1 光學深空網絡
3.3.2 任務的數據速率/JBER
3.3.3 望遠鏡站點位置
3.3.4 網絡連續性和峰值
3.4 激光在湍流大氣中的傳播
3.4.1 大氣湍流
3.4.2 大氣“視覺”效應
3.4.3 光學閃爍或輻照波動
3.4.4 大氣湍流引起的到達角
參考文獻
第四章:光學調變和編碼(Samuel J. Dolinar、Jon Hamkins、Bruce E. Moision 和 Victor A. Vilnrotter)
4.1 介紹
4.2 檢測光場的統計模型
4.2.1 光場的量子模型
4.2.1.1 電場的量子化
4.2.1.2 單一場模式的相干態表示
4.2.1.3 熱噪聲的量子表示
4.2.1.4 信號加熱噪聲的量子表示
4.2.2 直接檢測的統計模型
4.2.2.1 理想光電探測器或理想光電倍增管的泊松通道模型
4.2.2.2 APD探測器的McIntyre-Conradi模型
4.2.2.3 Webb、McIntyre和Conradi對McIntyre-Conradi模型的近似
4.2.2.4 WMC加高斯近似
4.2.2.5 加性白高斯噪聲近似
4.2.3 統計模型總結
4.3 調變格式
4.3.1 開關調變(OOK)
4.3.2 脈衝位置調變(PPM)
4.3.3 差分PPM(DPPM)
4.3.4 重疊PPM(OPPM)
4.3.5 波長移位調變(WSK)
4.3.6 結合PPM和WSK
4.4 調變限制下的速率限制
4.4.1 香農容量
4.4.1.1 容量特徵:固定持續時間邊緣
4.4.1.2 容量特徵:可變持續時間邊緣
4.4.1.3 容量特徵:概率特徵
4.4.1.4 容量特徵:能量效率
4.4.2 約束條件
4.4.2.1 死時間
4.4.2.2 運行長度
4.4.3 調變碼
4.4.3.1 帶死時間的M-ary PPM
4.4.3.2 帶死時間的M-ary DPPM
4.4.3.3 同步可變長度碼
4.5 無編碼光學調變的性能
4.5.1 在泊松通道上直接檢測OOK
4.5.2 直接檢測PPM
4.5.2.1 泊松通道
4.5.2.2 AWGN通道
4.5.3 直接檢測結合PPM和WSK
4.5.4 使用基於量子檢測理論的接收器的調變性能
4.5.4.1 基於量子檢測理論的接收器
4.5.4.2 代表性調變的性能
4.6 光學通道容量
4.6.1 PPM通道的容量:一般公式
4.6.2 軟決策PPM的容量:特定通道模型
4.6.2.1 泊松通道
4.6.2.2 AWGN通道
4.6.3 硬決策與軟決策容量
4.6.4 使用PPM的損失
4.6.5 量子檢測的二進制通道容量
4.7 光學調變的通道碼
4.7.1 Reed-Solomon碼
4.7.2 用於光學調變的Turbo和類Turbo碼
4.7.2.1 並行串聯(Turbo)碼
4.7.2.2 具有迭代解碼的串聯碼
4.8 編碼光學調變的性能
4.8.1 參數選擇
4.8.2 性能估算
4.8.2.1 Reed-Solomon碼
4.8.2.2 迭代碼
4.8.3 可達數據速率與平均信號功率的關係
參考文獻
第五章:飛行收發器(Hamid Hemmati、Gerardo G. Ortiz、William T. Roberts、Malcolm W. Wright 和 Shinhak Lee)
5.1 光機械子系統(Hamid Hemmati)
5.1.1 介紹
5.1.2 光束路徑
5.1.3 光學設計要求、設計驅動因素和挑戰
5.1.4 光學設計驅動因素和方法
5.1.5 發射-接收隔離
5.1.6 雜散光控制
5.1.6.1 在小太陽角度下的操作
5.1.6.2 表面清潔度要求
5.1.7 傳輸、對準和波前質量預算
5.1.8 激光有效耦合到遮蔽望遠鏡
5.1.8.1 錐形光學元件
5.1.8.2 子孔徑照明
5.1.8.3 棱鏡光束切割器
5.1.8.4 光束分離器/合併器
5.1.9 結構、材料和結構分析
5.1.10 使用光纖
5.1.11 用於獲取和追蹤的星跟踪光學
5.1.12 熱管理
5.1.13 光學系統設計示例
5.1.13.1 無焦前光學