買這商品的人也買了...
-
$1,078Operating System Principles, 7/e(IE) (美國版ISBN:0471694665-Operating System Concepts, 7/e) (平裝)
-
$880$695 -
$150$119 -
$880$695 -
$5,930$5,634 -
$980$774 -
$4,275Handbook of Machine Vision
-
$1,274Computer Architecture: A Quantitative Approach, 4/e (Paperback)
-
$990$891 -
$550$435 -
$2,400$2,280 -
$650$553 -
$900Microsoft Office Communications Server 2007 Resource Kit (Paperback)
-
$1,225Feature Extraction & Image Processing, 2/e (Paperback)
-
$490$387 -
$740$585 -
$1,150$1,093 -
$1,300$1,274 -
$780$616 -
$520$406 -
$520$343 -
$500$395 -
$580$458 -
$780$616 -
$580$458
相關主題
商品描述
Description
The main focus of the book is on computational modelling of biological and natural intelligent systems in order to develop nature inspired artificially intelligent systems. These algorithmic models have as their main objective to facilitate the implementation of artificial intelligent systems for solving complex real-world systems (e.g. fuzzy systems are applied successfully to control systems, gear transmission, breaking systems; swarm intelligence to image classification).
This second edition expands on all these paradigms, providing a more detailed and equal treatment of them all. Most recent advances in CI have been added, namely artificial immune systems, hybrid systems, and a section on how to perform empirical studies.
Table of Contents
Page
List of Tables
List of Figures
List of Algorithms
Preface
Part I INTRODUCTION
1 Introduction to Computational Intelligence
Part II ARTIFICIAL NEURAL NETWORKS
2 The Artificial Neuron
3 Supervised Learning Neural Networks
4 Unsupervised Learning Neural Networks
5 Radial Basis Function Networks
6 Reinforcement Learning
7 Performance Issues (Supervised Learning)
Part III EVOLUTIONARY COMPUTATION
8 Introduction to Evolutionary Computation
9 Genetic Algorithms
10 Genetic Programming
11 Evolutionary Programming
12 Evolution Strategies
13 Differential Evolution
14 Cultural Algorithms
15 Coevolution
Part IV COMPUTATIONAL SWARM INTELLIGENCE
16 Particle Swarm Optimization
17 Ant Algorithms
Part V ARTIFICIAL IMMUNE SYSTEMS
18 Natural Immune System
19 Artificial Immune Models
Part VI FUZZY SYSTEMS
20 Fuzzy Sets
21 Fuzzy Logic and Reasoning
22 Fuzzy Controllers
23 Rough Sets
24 FINAL REMARKS
References
A Optimization Theory
商品描述(中文翻譯)
描述
本書的主要焦點在於生物和自然智能系統的計算模型,以開發受自然啟發的人工智能系統。這些算法模型的主要目標是促進人工智能系統的實施,以解決複雜的現實世界系統(例如,模糊系統成功應用於控制系統、齒輪傳動、制動系統;群體智能用於圖像分類)。
本書的第二版擴展了所有這些範式,對它們進行了更詳細和均等的處理。最近在計算智能(Computational Intelligence, CI)方面的最新進展已被添加,包括人工免疫系統、混合系統,以及如何進行實證研究的部分。
目錄
頁面
表格列表
圖形列表
算法列表
前言
第一部分 介紹
1 計算智能簡介
第二部分 人工神經網絡
2 人工神經元
3 監督學習神經網絡
4 非監督學習神經網絡
5 径向基函數網絡
6 強化學習
7 性能問題(監督學習)
第三部分 演化計算
8 演化計算簡介
9 遺傳算法
10 遺傳編程
11 演化編程
12 演化策略
13 差分演化
14 文化算法
15 共同演化
第四部分 計算群體智能
16 粒子群優化
17 蟻群算法
第五部分 人工免疫系統
18 自然免疫系統
19 人工免疫模型
第六部分 模糊系統
20 模糊集合
21 模糊邏輯與推理
22 模糊控制器
23 粗糙集合
24 最後的評論
參考文獻
A 優化理論