The Art of Error Correcting Coding, 2/e (Hardcover)
Robert H. Morelos-Zaragoza
- 出版商: Wiley
- 出版日期: 2006-08-21
- 售價: $1,200
- 貴賓價: 9.8 折 $1,176
- 語言: 英文
- 頁數: 278
- 裝訂: Hardcover
- ISBN: 0470015586
- ISBN-13: 9780470015582
無法訂購
買這商品的人也買了...
-
$2,860$2,717 -
$540$486 -
$2,500$2,375 -
$1,068Introduction to Cryptography with Coding Theory, 2/e (Paperback)
-
$880$695 -
$1,976Error Correction Coding : Mathematical Methods and Algorithms
-
$650$514 -
$520$406 -
$720$569 -
$450$405 -
$380$342 -
$2,010$1,910 -
$720$648 -
$1,638Cross-Platform Development in C++: Building Mac OS X, Linux, and Windows Applications (Paperback)
-
$1,640Software Testing: A Craftsman's Approach, 3/e (Hardcover)
-
$680$578 -
$490$417 -
$580$493 -
$880$695 -
$4,150$3,943 -
$350$277 -
$400$380 -
$349$297 -
$320$250 -
$3,680$3,496
相關主題
商品描述
Description
Building on the success of the first edition, which offered a practical introductory approach to the techniques of error concealment, this book, now fully revised and updated, provides a comprehensive treatment of the subject and includes a wealth of additional features. The Art of Error Correcting Coding, Second Edition explores intermediate and advanced level concepts as well as those which will appeal to the novice.
All key topics are discussed, including Reed-Solomon codes, Viterbi decoding, soft-output decoding algorithms, MAP, log-MAP and MAX-log-MAP. Reliability-based algorithms GMD and Chase are examined, as are turbo codes, both serially and parallel concatenated, as well as low-density parity-check (LDPC) codes and their iterative decoders.
- Features additional problems at the end of each chapter and an instructor’s solutions manual
- Updated companion website offers new C/C ++programs and MATLAB scripts, to help with the understanding and implementation of basic ECC techniques
- Easy to follow examples illustrate the fundamental concepts of error correcting codes
- Basic analysis tools are provided throughout to help in the assessment of the error performance block and convolutional codes of a particular error correcting coding (ECC) scheme for a selection of the basic channel models
This edition provides an essential resource to engineers, computer scientists and graduate students alike for understanding and applying ECC techniques in the transmission and storage of digital information.
Table of Contents
Preface.
Foreword.
The ECC web site.
1. Introduction.
1.1 Error correcting coding: Basic concepts.
1.1.1 Block codes and convolutional codes.
1.1.2 Hamming distance, Hamming spheres and error correcting capability.
1.2 Linear block codes.
1.2.1 Generator and parity-check matrices.
1.2.2 The weight is the distance.
1.3 Encoding and decoding of linear block codes.
1.3.1 Encoding with G and H.
1.3.2 Standard array decoding.
1.3.3 Hamming spheres, decoding regions and the standard array.
1.4 Weight distribution and error performance.
1.4.1 Weight distribution and undetected error probability over a BSC.
1.4.2 Performance bounds over BSC, AWGN and fading channels.
1.5 General structure of a hard-decision decoder of linear codes.
Problems.
2. Hamming, Golay and Reed–Muller codes.
2.1 Hamming codes.
2.1.1 Encoding and decoding procedures.
2.2 The binary Golay code.
2.2.1 Encoding.
2.2.2 Decoding.
2.2.3 Arithmetic decoding of the extended (24, 12, 8) Golay code.
2.3 Binary Reed–Muller codes.
2.3.1 Boolean polynomials and RM codes.
2.3.2 Finite geometries and majority-logic decoding.
Problems.
3. Binary cyclic codes and BCH codes.
3.1 Binary cyclic codes.
3.1.1 Generator and parity-check polynomials.
3.1.2 The generator polynomial.
3.1.3 Encoding and decoding of binary cyclic codes.
3.1.4 The parity-check polynomial.
3.1.5 Shortened cyclic codes and CRC codes.
3.1.6 Fire codes.
3.2 General decoding of cyclic codes.
3.2.1 GF(2m) arithmetic.
3.3 Binary BCH codes.
3.3.1 BCH bound.
3.4 Polynomial codes.
3.5 Decoding of binary BCH codes.
3.5.1 General decoding algorithm for BCH codes.
3.5.2 The Berlekamp–Massey algorithm (BMA).
3.5.3 PGZ decoder.
3.5.4 Euclidean algorithm.
3.5.5 Chien search and error correction.
3.5.6 Errors-and-erasures decoding.
3.6 Weight distribution and performance bounds.
3.6.1 Error performance evaluation.
Problems.
4. Nonbinary BCH codes: Reed–Solomon codes.
4.1 RS codes as polynomial codes.
4.2 From binary BCH to RS codes.
4.3 Decoding RS codes.
4.3.1 Remarks on decoding algorithms.
4.3.2 Errors-and-erasures decoding.
4.4 Weight distribution.
Problems.
5. Binary convolutional codes.
5.1 Basic structure.
5.1.1 Recursive systematic convolutional codes.
5.1.2 Free distance.
5.2 Connections with block codes.
5.2.1 Zero-tail construction.
5.2.2 Direct-truncation construction.
5.2.3 Tail-biting construction.
5.2.4 Weight distributions.
5.3 Weight enumeration.
5.4 Performance bounds.
5.5 Decoding: Viterbi algorithm with Hamming metrics.
5.5.1 Maximum-likelihood decoding and metrics.
5.5.2 The Viterbi algorithm.
5.5.3 Implementation issues.
5.6 Punctured convolutional codes.
5.6.1 Implementation issues related to punctured convolutional codes.
5.6.2 RCPC codes.
Problems.
6. Modifying and combining codes.
6.1 Modifying codes.
6.1.1 Shortening.
6.1.2 Extending.
6.1.3 Puncturing.
6.1.4 Augmenting, expurgating and lengthening.
6.2 Combining codes.
6.2.1 Time sharing of codes.
6.2.2 Direct sums of codes.
6.2.3 The |u|u + v|-construction and related techniques.
6.2.4 Products of codes.
6.2.5 Concatenated codes.
6.2.6 Generalized concatenated codes.
7. Soft-decision decoding.
7.1 Binary transmission over AWGN channels.
7.2 Viterbi algorithm with Euclidean metric.
7.3 Decoding binary linear block codes with a trellis.
7.4 The Chase algorithm.
7.5 Ordered statistics decoding.
7.6 Generalized minimum distance decoding.
7.6.1 Sufficient conditions for optimality.
7.7 List decoding.
7.8 Soft-output algorithms.
7.8.1 Soft-output Viterbi algorithm.
7.8.2 Maximum-a posteriori (MAP) algorithm.
7.8.3 Log-MAP algorithm.
7.8.4 Max-Log-MAP algorithm.
7.8.5 Soft-output OSD algorithm.
Problems.
8. Iteratively decodable codes.
8.1 Iterative decoding.
8.2 Product codes.
8.2.1 Parallel concatenation: Turbo codes.
8.2.2 Serial concatenation.
8.2.3 Block product codes.
8.3 Low-density parity-check codes.
8.3.1 Tanner graphs.
8.3.2 Iterative hard-decision decoding: The bit-flip algorithm.
8.3.3 Iterative probabilistic decoding: Belief propagation.
Problems.
9. Combining codes and digital modulation.
9.1 Motivation.
9.1.1 Examples of signal sets.
9.1.2 Coded modulation.
9.1.3 Distance considerations.
9.2 Trellis-coded modulation (TCM).
9.2.1 Set partitioning and trellis mapping.
9.2.2 Maximum-likelihood.
9.2.3 Distance considerations and error performance.
9.2.4 Pragmatic TCM and two-stage decoding.
9.3 Multilevel coded modulation.
9.3.1 Constructions and multistage decoding.
9.3.2 Unequal error protection with MCM.
9.4 Bit-interleaved coded modulation.
9.4.1 Gray mapping.
9.4.2 Metric generation: De-mapping.
9.4.3 Interleaving.
9.5 Turbo trellis-coded modulation.
9.5.1 Pragmatic turbo TCM.
9.5.2 Turbo TCM with symbol interleaving.
9.5.3 Turbo TCM with bit interleaving.
Problems.
Appendix A: Weight distributions of extended BCH codes.
A.1 Length 8.
A.2 Length 16.
A.3 Length 32.
A.4 Length 64.
A.5 Length 128.
Bibliography.
Index.
商品描述(中文翻譯)
描述
在第一版成功的基礎上,本書提供了一個實用的入門方法來介紹錯誤隱藏技術,現在已全面修訂和更新,提供了該主題的綜合處理,並包含大量額外的特點。《錯誤更正編碼的藝術,第二版》探討了中級和高級概念,以及對初學者有吸引力的內容。
所有關鍵主題均有討論,包括 Reed-Solomon 代碼、Viterbi 解碼、軟輸出解碼算法、MAP、log-MAP 和 MAX-log-MAP。還探討了基於可靠性的算法 GMD 和 Chase,以及串行和並行串聯的 Turbo 代碼,以及低密度奇偶檢查 (LDPC) 代碼及其迭代解碼器。
- 每章末尾提供額外的問題和教師解答手冊
- 更新的伴隨網站提供新的 C/C++ 程式