Large Deviations for Gaussian Queues: Modelling Communication Networks
暫譯: 高斯排隊的大偏差:通訊網路建模
Michel Mandjes
- 出版商: Wiley
- 出版日期: 2007-06-05
- 售價: $1,250
- 貴賓價: 9.8 折 $1,225
- 語言: 英文
- 頁數: 336
- 裝訂: Hardcover
- ISBN: 0470015233
- ISBN-13: 9780470015230
下單後立即進貨 (約5~7天)
買這商品的人也買了...
-
$950$751 -
$480$432 -
$650$553 -
$600$510 -
$980$774 -
$650$507 -
$750$593 -
$620$490 -
$350$298 -
$990$891 -
$600$480 -
$620$527 -
$980$774 -
$360$284 -
$490$387 -
$480$374 -
$490$387 -
$960$816 -
$490$387 -
$420$357 -
$750$495 -
$520$442 -
$680$666 -
$490$323 -
$1,520$1,444
相關主題
商品描述
Description
In recent years the significance of Gaussian processes to communication networks has grown considerably. The inherent flexibility of the Gaussian traffic model enables the analysis, in a single mathematical framework, of systems with both long-range and short-range dependent input streams.
Large Deviations for Gaussian Queues demonstrates how the Gaussian traffic model arises naturally, and how the analysis of the corresponding queuing model can be performed. The text provides a general introduction to Gaussian queues, and surveys recent research into the modelling of communications networks. Coverage includes:
*Discussion of the theoretical concepts and practical aspects related to Gaussian traffic models.
*Analysis of recent research asymptotic results for Gaussian queues, both in the large-buffer and many-sources regime.
*An emphasis on rare-event analysis, relying on a variety of asymptotic techniques.
*Examination of single-node FIFO queuing systems, as well as queues operating under more complex scheduling disciplines, and queuing networks.
*A set of illustrative examples that directly relate to important practical problems in communication networking.
*A large collection of instructive exercises and accompanying solutions.
Large Deviations for Gaussian Queues assumes minimal prior knowledge. It is ideally suited for postgraduate students in applied probability, operations research, computer science and electrical engineering. The book’s self-contained style makes it perfect for practitioners in the communications networking industry and for researchers in related areas.
Table of Contents
Preface and acknowledgments.
1 Introduction.
Part A: Gaussian traffic and large deviations.
2 The Gaussian source model.
2.1 Modeling network traffic.
2.2 Notation and preliminaries on Gaussian random variables.
2.3 Gaussian sources.
2.4 Generic examples-long-range dependence and smoothness.
2.5 Other useful Gaussian source models.
2.6 Applicability of Gaussian source models for network traffic.
3 Gaussian sources: validation, justification.
3.1 Validation.
3.2 Convergence of on-off traffic to a Gaussian process.
4 Large deviations for Gaussian processes.
4.1 Cram’er's theorem.
4.2 Schilder's theorem.
Part B: Large deviations of Gaussian queues.
5 Gaussian queues: an introduction.
5.1 Lindley's recursion, the steady-state buffer content.
5.2 Gaussian queues.
5.3 Special cases: Brownian motion and Brownian bridge.
5.4 A powerful approximation.
5.5 Asymptotics.
5.6 Large-buffer asymptotics.
6 Logarithmic many-sources asymptotics.
6.1 Many-sources asymptotics: the loss curve.
6.2 Duality between loss curve and variance function.
6.3 The buffer-bandwidth curve is convex.
7 Exact many-sources asymptotics.
7.1 Slotted time: results.
7.2 Slotted time: proofs.
7.3 Continuous time: results.
7.4 Continuous time: proofs.
8 Simulation.
8.1 Determining the simulation horizon.
8.2 Importance sampling algorithms.
8.3 Asymptotic efficiency.
8.4 Efficient estimation of the overflow probability.
9 Tandem and priority queues.
9.1 Tandem: model and preliminaries.
9.2 Tandem: lower bound on the decay rate.
9.3 Tandem: tightness of the decay rate.
9.4 Tandem: properties of the input rate path.
9.5 Tandem: examples.
9.6 Priority queues.
10 Generalized processor sharing.
10.1 Preliminaries on GPS.
10.2 Generic upper and lower bound on the overflow probability.
10.3 Lower bound on the decay rate: class 2 in underload.
10.4 Upper bound on the decay rate: class 2 in underload.
10.5 Analysis of the decay rate: class 2 in overload.
10.6 Discussion of the results.
10.7 Delay asymptotics.
11 Explicit results for short-range dependent inputs.
11.1 Asymptotically linear variance; some preliminaries.
11.2 Tandem queue with srd input.
11.3 Priority queue with srd input.
11.4 GPS queue with srd input.
11.5 Concluding remarks.
12 Brownian queues.
12.1 Single queue: detailed results.
12.2 Tandem: distribution of the downstream queue.
12.3 Tandem: joint distribution.
Part C: Applications.
13 Weight setting in GPS.
13.1 An optimal partitioning approach to weight setting.
13.2 Approximation of the overflow probabilities.
13.3 Fixed weights.
13.4 Realizable region.
14 A link dimensioning formula and empirical support.
14.1 Objectives, modeling, and analysis.
14.2 Numerical study.
14.3 Empirical study.
14.4 Implementation aspects.
15 Link dimensioning: indirect variance estimation.
15.1 Theoretical foundations.
15.2 Implementation issues.
15.3 Error analysis of the inversion procedure.
15.4 Validation.
16 A framework for bandwidth trading.
16.1 Bandwidth trading.
16.2 Model and preliminaries.
16.3 Single-link network.
16.4 Gaussian traffic; utility as a function of loss.
16.5 Sanov's theorem and its inverse.
16.6 Estimation of loss probabilities.
16.7 Numerical example.
Bibliography.
Index.
商品描述(中文翻譯)
**描述**
近年來,高斯過程在通信網絡中的重要性顯著增長。高斯流量模型的固有靈活性使得可以在單一數學框架中分析具有長程和短程依賴輸入流的系統。《高斯排隊的大偏差》展示了高斯流量模型如何自然產生,以及如何對應的排隊模型進行分析。該書提供了高斯排隊的概述,並調查了最近在通信網絡建模方面的研究。內容包括:
* 討論與高斯流量模型相關的理論概念和實際方面。
* 分析最近對高斯排隊的漸近結果,包括大緩衝區和多源情況。
* 強調稀有事件分析,依賴於各種漸近技術。
* 檢查單節點FIFO排隊系統,以及在更複雜調度規則下運行的排隊和排隊網絡。
* 一系列與通信網絡中重要實際問題直接相關的示例。
* 大量的指導性練習及其解答。
《高斯排隊的大偏差》假設讀者具備最少的先前知識。該書非常適合應用概率、運籌學、計算機科學和電氣工程的研究生。書中的自足風格使其非常適合通信網絡行業的從業者和相關領域的研究人員。
**目錄**
前言與致謝。
1 介紹。
A部分:高斯流量與大偏差。
2 高斯源模型。
2.1 網絡流量建模。
2.2 高斯隨機變量的符號與初步知識。
2.3 高斯源。
2.4 通用示例—長程依賴與平滑性。
2.5 其他有用的高斯源模型。
2.6 高斯源模型在網絡流量中的適用性。
3 高斯源:驗證與正當性。
3.1 驗證。
3.2 開關流量收斂至高斯過程。
4 高斯過程的大偏差。
4.1 克拉默定理。
4.2 希爾德定理。
B部分:高斯排隊的大偏差。
5 高斯排隊:介紹。
5.1 林德利遞歸,穩態緩衝區內容。
5.2 高斯排隊。
5.3 特殊情況:布朗運動與布朗橋。
5.4 一個強大的近似。
5.5 漸近性。
5.6 大緩衝區漸近性。
6 對數多源漸近性。
6.1 多源漸近性:損失曲線。
6.2 損失曲線與方差函數之間的對偶性。
6.3 緩衝帶寬曲線是凸的。
7 精確的多源漸近性。
7.1 時隙時間:結果。
7.2 時隙時間:證明。
7.3 連續時間:結果。
7.4 連續時間:證明。
8 模擬。
8.1 確定模擬視野。
8.2 重要性抽樣算法。
8.3 漸近效率。
8.4 溢出概率的有效估計。
9 串聯與優先級排隊。
9.1 串聯:模型與初步知識。
9.2 串聯:衰減率的下界。
9.3 串聯:衰減率的緊湊性。
9.4 串聯:輸入速率路徑的特性。
9.5 串聯:示例。
9.6 優先級排隊。
10 廣義處理器共享。
10.1 GPS的初步知識。
10.2 溢出概率的通用上界與下界。
10.3 衰減率的下界:在負載不足下的第2類。
10.4 衰減率的上界:在負載不足下的第2類。
10.5 衰減率的分析:在過載下的第2類。
10.6 結果討論。
10.7 延遲漸近性。
11 短程依賴輸入的顯式結果。
11.1 漸近線性方差;一些初步知識。
11.2 具有短程依賴輸入的串聯排隊。
11.3 具有短程依賴輸入的優先級排隊。
11.4 具有短程依賴輸入的GPS排隊。
11.5 總結性評論。
12 布朗排隊。
12.1 單排隊:詳細結果。
12.2 串聯:下游排隊的分佈。
12.3 串聯:聯合分佈。
C部分:應用。
13 GPS中的權重設定。
13.1 一種最佳分區方法來設定權重。
13.2 溢出概率的近似。
13.3 固定權重。
13.4 可實現區域。
14 一個鏈路尺寸公式及其實證支持。
14.1 目標、建模與分析。
14.2 數值研究。
14.3 實證研究。
14.4 實施方面。
15 鏈路尺寸:間接方差估計。
15.1 理論基礎。
15.2 實施問題。
15.3 反演過程的誤差分析。
15.4 驗證。
16 帶寬交易的框架。
16.1 帶寬交易。
16.2 模型與初步知識。
16.3 單鏈路網絡。
16.4 高斯流量;損失的效用函數。
16.5 萨诺夫定理及其逆定理。
16.6 損失概率的估計。
16.7 數值示例。
參考文獻。
索引。