Handbook of Metaheuristic Algorithms: From Fundamental Theories to Advanced Applications
暫譯: 元啟發演算法手冊:從基本理論到進階應用

Tsai, Chun-Wei, Chiang, Ming-Chao

  • 出版商: Academic Press
  • 出版日期: 2023-06-05
  • 售價: $6,490
  • 貴賓價: 9.5$6,166
  • 語言: 英文
  • 頁數: 622
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0443191085
  • ISBN-13: 9780443191084
  • 相關分類: Algorithms-data-structures
  • 海外代購書籍(需單獨結帳)

商品描述

Handbook of Metaheuristic Algorithms: From Fundamental Theories to Advanced Applications provides a brief introduction to metaheuristic algorithms from the ground up, including basic ideas and advanced solutions. Although readers may be able to find source code for some metaheuristic algorithms on the Internet, the coding styles and explanations are generally quite different, and thus requiring expanded knowledge between theory and implementation. This book can also help students and researchers construct an integrated perspective of metaheuristic and unsupervised algorithms for artificial intelligence research in computer science and applied engineering domains.

Metaheuristic algorithms can be considered the epitome of unsupervised learning algorithms for the optimization of engineering and artificial intelligence problems, including simulated annealing (SA), tabu search (TS), genetic algorithm (GA), ant colony optimization (ACO), particle swarm optimization (PSO), differential evolution (DE), and others. Distinct from most supervised learning algorithms that need labeled data to learn and construct determination models, metaheuristic algorithms inherit characteristics of unsupervised learning algorithms used for solving complex engineering optimization problems without labeled data, just like self-learning, to find solutions to complex problems.

商品描述(中文翻譯)

《元啟發演算法手冊:從基本理論到進階應用》提供了元啟發演算法的簡要介紹,涵蓋基本概念和進階解決方案。雖然讀者可能在互聯網上找到一些元啟發演算法的源代碼,但這些代碼的編寫風格和解釋通常相差甚遠,因此需要擴展理論與實作之間的知識。本書也能幫助學生和研究人員建立對元啟發演算法和無監督演算法的整體觀點,以便在計算機科學和應用工程領域進行人工智慧研究。

元啟發演算法可以被視為無監督學習演算法的典範,用於優化工程和人工智慧問題,包括模擬退火(Simulated Annealing, SA)、禁忌搜尋(Tabu Search, TS)、遺傳演算法(Genetic Algorithm, GA)、螞蟻群優化(Ant Colony Optimization, ACO)、粒子群優化(Particle Swarm Optimization, PSO)、差分演化(Differential Evolution, DE)等。與大多數需要標記數據來學習和構建決策模型的監督學習演算法不同,元啟發演算法繼承了無監督學習演算法的特性,能夠在沒有標記數據的情況下解決複雜的工程優化問題,就像自我學習一樣,尋找複雜問題的解決方案。