Data Mining: Practical Machine Learning Tools and Techniques
暫譯: 資料探勘:實用的機器學習工具與技術

Foulds, James, Witten, Ian H., Frank, Eibe

  • 出版商: Morgan Kaufmann
  • 出版日期: 2025-04-01
  • 售價: $3,180
  • 貴賓價: 9.5$3,021
  • 語言: 英文
  • 頁數: 688
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0443158886
  • ISBN-13: 9780443158889
  • 相關分類: Machine LearningData-mining
  • 海外代購書籍(需單獨結帳)

商品描述

Data Mining: Practical Machine Learning Tools and Techniques, Fifth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated new edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.

Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including more recent deep learning content on topics such as generative AI (GANs, VAEs, diffusion models), large language models (transformers, BERT and GPT models), and adversarial examples, as well as a comprehensive treatment of ethical and responsible artificial intelligence topics. Authors Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal, along with new author James R. Foulds, include today's techniques coupled with the methods at the leading edge of contemporary research

商品描述(中文翻譯)

《資料探勘:實用機器學習工具與技術,第五版》提供了機器學習概念的全面基礎,並針對在現實資料探勘情境中應用這些工具和技術提供實用建議。這本備受期待的新版本是資料探勘和機器學習領域中最受推崇的著作,教導讀者從準備輸入、解釋輸出、評估結果到成功資料探勘方法核心的演算法方法所需的所有知識。

廣泛的更新反映了自上版以來該領域發生的技術變化和現代化,包括更近期的深度學習內容,涵蓋生成式人工智慧(GANs、VAEs、擴散模型)、大型語言模型(transformers、BERT 和 GPT 模型)以及對抗性範例,還有對倫理和負責任的人工智慧主題的全面探討。作者 Ian H. Witten、Eibe Frank、Mark A. Hall 和 Christopher J. Pal,連同新作者 James R. Foulds,結合了當今的技術與當代研究的前沿方法。