Carbon Dioxide Reduction Through Advanced Conversion and Utilization Technologies

Zheng, Yun, Yu, Bo, Wang, Jianchen

  • 出版商: CRC
  • 出版日期: 2021-03-31
  • 售價: $2,350
  • 貴賓價: 9.5$2,233
  • 語言: 英文
  • 頁數: 306
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0367779862
  • ISBN-13: 9780367779863
  • 下單後立即進貨 (約2~4週)

相關主題

商品描述

Carbon Dioxide Reduction through Advanced Conversion and Utilization Technologies covers fundamentals, advanced conversion technologies, economic feasibility analysis, and future research directions in the field of CO2 conversion and utilization.

 

 

This book emphasizes principles of various conversion technologies for CO2 reduction such as enzymatic conversion, mineralization, thermochemical, photochemical, and electrochemical processes. It addresses materials, components, assembly and manufacturing, degradation mechanisms, challenges, and development strategies. Applications of conversion technologies for CO2 reduction to produce useful fuels and chemicals in energy and industrial systems are discussed as solutions to reduce greenhouse effects and energy shortages. Particularly, the advanced materials and technology of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide cells (SOCs) are reviewed and the introduction, fundamentals, and some significant topics regarding this CO2 conversion process are discussed.

 

 

 

 

This book provides a comprehensive and clear picture of advanced technologies in CO2 conversion and utilization. Written in a clear and detailed manner, it is suitable for students as well as industry professionals, researchers, and academics.

 

 

作者簡介

Yun Zheng is studying for a PhD degree from the Institute of Nuclear and New Energy Technology (INET) at Tsinghua University, China. He received his BS and MS degrees in chemistry from China Three Gorges University in 2012 and Ocean University of China in 2015, respectively. During 2009-2012, he studied in Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China for investigations of photocatalysis and photo-electrocatalysis of carbonaceous contaminants using doped semiconductor and organometallic complex materials. The research topic in Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, China during 2012-2015 is electrodialysis and membrane bioreactor. His current research interests are electrochemical energy storage and conversion, especially for the research of high temperature electrolysis of CO2/H2O to produce sustainable fuels using solid oxide electrolytic cells (SOECs).

Dr. Bo Yu is an associate professor at Institute of Nuclear and New Energy Technology (INET) at Tsinghua University, China. Dr. Yu obtained her B.S. and M.Sc. in physical chemistry from Northeastern University in 1997 and 2000, respectively. She received her PhD from Tsinghua University in 2004 and joined the Nuclear Science & Engineering Department at Massachusetts Institute of Technology (MIT) as a visiting researcher in 2012. Dr. Yu has been responsible for the research and development of nuclear hydrogen or syngas production through high temperature electrolysis of CO2/H2O at INET since 2005. Her research interests are electrochemical energy storage and conversion with some focuses on solid oxide cells (SOFC/SOEC) technologies, surface/interface electrochemistry, theoretical and experimental analyses of electrode kinetics, electrocatalysis and applied electrochemistry. She is the author/co-author of more than 100 peer-reviewed articles, over 30 patents and several book chapters. Dr. Yu is a Board Member of Nuclear Hydrogen Division of International Associate Hydrogen Energy (IAHE). She is also an Associated Editor of the International Journal of Energy Technology & Policy.

Dr. Jianchen Wang is a professor at the Institute of Nuclear and New Energy Technology (INET) at Tsinghua University, China. He earned his B.S. degree in physical chemistry and master's degree in applied chemistry from Tsinghua University in 1987 and 1992. He has worked in INET since 1987. He obtained a position as an associate professor in 1998 and took a position as a professor in 2004 in INET. He is a deputy director of China Society of Nuclear and Radiochemistry. His research interests are in the areas of nuclear chemistry, separation chemistry in actinides and other nuclear fission elements.

Dr. Jiujun Zhang is a Professor at Shanghai University and Principal Research Officer (Emeritus) at National Research Council of Canada (NRC). Dr. Zhang received his B.S. and M.Sc. in Electrochemistry from Peking University in 1982 and 1985, respectively, and his Ph.D. in Electrochemistry from Wuhan University in 1988. After completing his Ph.D., he took a position as an associate professor at the Huazhong Normal University for two years. Starting in 1990, he carried out three terms of postdoctoral research at the California Institute of Technology, York University, and the University of British Columbia. Dr. Zhang has over thirty years of R&D experience in theoretical and applied electrochemistry, including over eighteen years of fuel cell R&D (among these 6 years at Ballard Power Systems and 12 years at NRC-IFCI (before 2011)/NRC-EME (after 2011), and 3 years of electrochemical sensor experience. Dr. Zhang holds several adjunct professorships, including one at the University of Waterloo, one at the University of British Columbia and one at Peking University. Up to now, Dr. Zhang has co-authored more than 400 publications including 230 refereed journal papers with approximately 22000 citations, 18 edited /co-authored books, 41 book chapters, as well as 110 conference and invited oral presentations. He also holds over 10 US/EU/WO/JP/CA patents, 11 US patent publications, and produced in excess of 90 industrial technical reports. Dr. Zhang serves as the editor/editorial board member for several international journals as well as Editor for book series (Electrochemical Energy Storage and Conversion, CRC press). Dr. Zhang is an active member of The Electrochemical Society (ECS), the International Society of Electrochemistry (ISE, Fellow Member), and the American Chemical Society (ACS), Canadian Institute of Chemistry (CIC), as well as the International Academy of Electrochemical Energy Science (IAOEES, Board Committee Member).