Background Modeling and Foreground Detection for Video Surveillance
暫譯: 視頻監控中的背景建模與前景檢測

Bouwmans, Thierry, Porikli, Fatih, Höferlin, Benjamin

  • 出版商: CRC
  • 出版日期: 2020-09-30
  • 售價: $2,350
  • 貴賓價: 9.5$2,233
  • 語言: 英文
  • 頁數: 631
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0367659115
  • ISBN-13: 9780367659110
  • 海外代購書籍(需單獨結帳)

商品描述

Background modeling and foreground detection are important steps in video processing used to detect robustly moving objects in challenging environments. This requires effective methods for dealing with dynamic backgrounds and illumination changes as well as algorithms that must meet real-time and low memory requirements.

 

 

 

 

 

 

 

Incorporating both established and new ideas, Background Modeling and Foreground Detection for Video Surveillance provides a complete overview of the concepts, algorithms, and applications related to background modeling and foreground detection. Leaders in the field address a wide range of challenges, including camera jitter and background subtraction.

 

 

 

 

 

 

 

 

 

The book presents the top methods and algorithms for detecting moving objects in video surveillance. It covers statistical models, clustering models, neural networks, and fuzzy models. It also addresses sensors, hardware, and implementation issues and discusses the resources and datasets required for evaluating and comparing background subtraction algorithms. The datasets and codes used in the text, along with links to software demonstrations, are available on the book's website.

 

 

 

 

 

 

 

 

 

A one-stop resource on up-to-date models, algorithms, implementations, and benchmarking techniques, this book helps researchers and industry developers understand how to apply background models and foreground detection methods to video surveillance and related areas, such as optical motion capture, multimedia applications, teleconferencing, video editing, and human-computer interfaces. It can also be used in graduate courses on computer vision, image processing, real-time architecture, machine learning, or data mining.

 

 

商品描述(中文翻譯)

背景建模和前景檢測是視頻處理中的重要步驟,用於在具有挑戰性的環境中穩健地檢測移動物體。這需要有效的方法來處理動態背景和光照變化,以及必須滿足實時和低記憶體要求的演算法。

結合了既有的和新的想法,視頻監控的背景建模與前景檢測提供了與背景建模和前景檢測相關的概念、演算法和應用的完整概述。該領域的領導者們針對各種挑戰進行探討,包括相機抖動和背景減除。

本書介紹了檢測視頻監控中移動物體的最佳方法和演算法。內容涵蓋統計模型、聚類模型、神經網絡和模糊模型。它還涉及傳感器、硬體和實施問題,並討論了評估和比較背景減除演算法所需的資源和數據集。書中使用的數據集和代碼,以及軟體演示的連結,均可在本書的網站上獲得。

作為一個關於最新模型、演算法、實施和基準技術的一站式資源,本書幫助研究人員和業界開發者理解如何將背景模型和前景檢測方法應用於視頻監控及相關領域,如光學運動捕捉、多媒體應用、視訊會議、視頻編輯和人機介面。它也可以用於計算機視覺、影像處理、實時架構、機器學習或資料挖掘的研究生課程。

作者簡介

Thierry Bouwmans, Fatih Porikli, Benjamin Höferlin, Antoine Vacavant

作者簡介(中文翻譯)

Thierry Bouwmans, Fatih Porikli, Benjamin Höferlin, Antoine Vacavant