Frontiers in Data Science
暫譯: 數據科學的前沿探索

Dehmer, Matthias, Emmert-Streib, Frank

  • 出版商: CRC
  • 出版日期: 2020-09-30
  • 售價: $2,330
  • 貴賓價: 9.5$2,214
  • 語言: 英文
  • 頁數: 383
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0367657651
  • ISBN-13: 9780367657659
  • 相關分類: Data Science
  • 海外代購書籍(需單獨結帳)

商品描述

Frontiers in Data Science deals with philosophical and practical results in Data Science. A broad definition of Data Science describes the process of analyzing data to transform data into insights. This also involves asking philosophical, legal and social questions in the context of data generation and analysis. In fact, Big Data also belongs to this universe as it comprises data gathering, data fusion and analysis when it comes to manage big data sets. A major goal of this book is to understand data science as a new scientific discipline rather than the practical aspects of data analysis alone.

商品描述(中文翻譯)

《數據科學的前沿》探討了數據科學中的哲學和實踐成果。數據科學的廣義定義描述了分析數據的過程,以將數據轉化為洞察。這也涉及在數據生成和分析的背景下提出哲學、法律和社會問題。事實上,大數據也屬於這個範疇,因為它涉及在管理大型數據集時的數據收集、數據融合和分析。本書的一個主要目標是將數據科學理解為一個新的科學學科,而不僅僅是數據分析的實踐方面。

作者簡介

Matthias Dehmer studied mathematics at the University of Siegen (Germany) and received his Ph.D. in computer science from the Technical University of Darmstadt (Germany). Afterwards, he was a research fellow at Vienna Bio Center (Austria), Vienna University of Technology, and University of Coimbra (Portugal). He obtained his habilitation in applied discrete mathematics from the Vienna University of Technology. Currently, he is Professor at UMIT - The Health and Life Sciences University (Austria) and also has a post at Bundeswehr Universit]at M]unchen (Germany). His research interests are in Data Science, Big Data, Complex Networks, Machine Learning and Information Theory. In particular, he is also working on machine learning-based methods to design new data analysis methods for solving problems in computational biology. He has more than 205 publications in applied mathematics, computer science and related disciplines.

 

 

Frank Emmert-Streib studied physics at the University of Siegen, Germany, gaining his PhD in theoretical physics from the University of Bremen. He was a postdoctoral fellow in the USA before becoming a Faculty member at the Center for Cancer Research at the Queen's University Belfast (UK). Currently, he is a Professor at Tampere University Technology, Finland, in the Department of Signal Processing. His research interests are in the field of computational biology, data science and analytics in the development and application of methods from statistics and machine learning for the analysis of big data from genomics, finance and business.

 

 

作者簡介(中文翻譯)

Matthias Dehmer 在德國西根大學學習數學,並在德國達姆施塔特工業大學獲得計算機科學博士學位。之後,他在維也納生物中心(奧地利)、維也納科技大學和科英布拉大學(葡萄牙)擔任研究員。他在維也納科技大學獲得應用離散數學的資格認證。目前,他是奧地利健康與生命科學大學(UMIT)的教授,同時在德國聯邦國防軍大學(Bundeswehr Universität München)擔任職務。他的研究興趣包括數據科學、大數據、複雜網絡、機器學習和信息理論。特別是,他也在研究基於機器學習的方法,以設計新的數據分析方法來解決計算生物學中的問題。他在應用數學、計算機科學及相關學科上發表了超過205篇論文。

Frank Emmert-Streib 在德國西根大學學習物理,並在不來梅大學獲得理論物理博士學位。他曾在美國擔任博士後研究員,之後成為貝爾法斯特女王大學癌症研究中心的教職員。目前,他是芬蘭坦佩雷科技大學信號處理系的教授。他的研究興趣集中在計算生物學、數據科學和分析,專注於從統計學和機器學習中發展和應用方法,以分析來自基因組學、金融和商業的大數據。