Robot Learning Human Skills and Intelligent Control Design
暫譯: 機器人學習人類技能與智能控制設計

Yang, Chenguang, Zeng, Chao, Zhang, Jianwei

  • 出版商: CRC
  • 出版日期: 2021-06-22
  • 售價: $5,500
  • 貴賓價: 9.5$5,225
  • 語言: 英文
  • 頁數: 174
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 0367634368
  • ISBN-13: 9780367634360
  • 相關分類: 機器人製作 Robots
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

In the last decades robots are expected to be of increasing intelligence to deal with a large range of tasks. Especially, robots are supposed to be able to learn manipulation skills from humans. To this end, a number of learning algorithms and techniques have been developed and successfully implemented for various robotic tasks. Among these methods, learning from demonstrations (LfD) enables robots to effectively and efficiently acquire skills by learning from human demonstrators, such that a robot can be quickly programmed to perform a new task.

This book introduces recent results on the development of advanced LfD-based learning and control approaches to improve the robot dexterous manipulation. First, there's an introduction to the simulation tools and robot platforms used in the authors' research. In order to enable a robot learning of human-like adaptive skills, the book explains how to transfer a human user's arm variable stiffness to the robot, based on the online estimation from the muscle electromyography (EMG). Next, the motion and impedance profiles can be both modelled by dynamical movement primitives such that both of them can be planned and generalized for new tasks. Furthermore, the book introduces how to learn the correlation between signals collected from demonstration, i.e., motion trajectory, stiffness profile estimated from EMG and interaction force, using statistical models such as hidden semi-Markov model and Gaussian Mixture Regression. Several widely used human-robot interaction interfaces (such as motion capture-based teleoperation) are presented, which allow a human user to interact with a robot and transfer movements to it in both simulation and real-word environments. Finally, improved performance of robot manipulation resulted from neural network enhanced control strategies is presented. A large number of examples of simulation and experiments of daily life tasks are included in this book to facilitate better understanding of the readers.

商品描述(中文翻譯)

在過去幾十年中,機器人被期望具備越來越高的智能,以應對各種任務。特別是,機器人應該能夠從人類學習操作技能。為此,已經開發並成功實施了多種學習算法和技術,以應對各種機器人任務。在這些方法中,從示範學習(Learning from Demonstrations, LfD)使機器人能夠通過學習人類示範者的方式,有效且高效地獲得技能,從而使機器人能夠快速編程以執行新任務。

本書介紹了基於LfD的先進學習和控制方法的最新成果,以改善機器人的靈巧操作。首先,介紹了作者研究中使用的模擬工具和機器人平台。為了使機器人能夠學習類似人類的自適應技能,本書解釋了如何根據肌肉電生理(EMG)的在線估計,將人類用戶的手臂變剛度轉移到機器人上。接下來,運動和阻抗特徵可以通過動態運動原型進行建模,這樣它們都可以被規劃並推廣到新任務中。此外,本書介紹了如何使用統計模型(如隱藏半馬爾可夫模型和高斯混合回歸)來學習從示範中收集的信號之間的關聯,即運動軌跡、從EMG估計的剛度特徵和互動力。還介紹了幾種廣泛使用的人機互動介面(如基於運動捕捉的遙操作),這些介面允許人類用戶與機器人互動並在模擬和現實環境中將動作轉移給機器人。最後,展示了通過神經網絡增強控制策略所帶來的機器人操作性能的改善。本書中包含大量日常任務的模擬和實驗示例,以促進讀者的更好理解。

作者簡介

Chenguang Yang is a Co-Chair of the Technical Committee on Collaborative Automation for Flexible Manufacturing (CAFM), IEEE Robotics and Automation Society and Co-Chair of the Technical Committee on Bio-mechatronics and Bio-robotics Systems (B2S), IEEE Systems, Man, and Cybernetics Society.

Chao Zeng is currently a Research Associate at the Institute of Technical Aspects of Multimodal Systems, Universität Hamburg.

Jianwei Zhang is the director of TAMS, Department of Informatics, Universität Hamburg, Germany.

作者簡介(中文翻譯)

程光楊是IEEE機器人與自動化學會靈活製造協作自動化技術委員會(CAFM)的共同主席,以及IEEE系統、人類與控制論學會生物機電與生物機器人系統技術委員會(B2S)的共同主席。

曾超目前是漢堡大學多模態系統技術方面研究所的研究助理。

張建偉是德國漢堡大學資訊學系的TAMS主任。