Data Analytics: A Small Data Approach
暫譯: 數據分析:小數據方法

Huang, Shuai, Deng, Houtao

  • 出版商: CRC
  • 出版日期: 2021-04-20
  • 售價: $3,950
  • 貴賓價: 9.5$3,753
  • 語言: 英文
  • 頁數: 257
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 0367609509
  • ISBN-13: 9780367609504
  • 相關分類: Data Science
  • 海外代購書籍(需單獨結帳)

商品描述

Data Analytics: A Small Data Approach is suitable for an introductory data analytics course to help students understand some main statistical learning models. It has many small datasets to guide students to work out pencil solutions of the models and then compare with results obtained from established R packages. Also, as data science practice is a process that should be told as a story, in this book there are many course materials about exploratory data analysis, residual analysis, and flowcharts to develop and validate models and data pipelines.

The main models covered in this book include linear regression, logistic regression, tree models and random forests, ensemble learning, sparse learning, principal component analysis, kernel methods including the support vector machine and kernel regression, and deep learning. Each chapter introduces two or three techniques. For each technique, the book highlights the intuition and rationale first, then shows how mathematics is used to articulate the intuition and formulate the learning problem. R is used to implement the techniques on both simulated and real-world dataset. Python code is also available at the book's website: http: //dataanalyticsbook.info.

商品描述(中文翻譯)

《數據分析:小數據方法》適合用作入門數據分析課程,幫助學生理解一些主要的統計學習模型。書中包含許多小型數據集,以指導學生解出模型的手算解,然後與使用已建立的 R 套件所獲得的結果進行比較。此外,由於數據科學實踐是一個應該以故事形式講述的過程,本書中有許多關於探索性數據分析、殘差分析和流程圖的課程材料,以發展和驗證模型及數據管道。

本書涵蓋的主要模型包括線性回歸、邏輯回歸、樹模型和隨機森林、集成學習、稀疏學習、主成分分析、核方法(包括支持向量機和核回歸)以及深度學習。每一章介紹兩到三種技術。對於每種技術,書中首先強調直覺和原理,然後展示數學如何用來表達直覺並形成學習問題。R 語言用於在模擬和真實世界數據集上實現這些技術。Python 代碼也可在本書網站上獲得:http://dataanalyticsbook.info。

作者簡介

Shuai Huang is an associate professor at the department of industrial & systems engineering at the university of Washington. He conducts interdisciplinary research in machine learning, data analytics, and applied operations research with applications on healthcare, manufacturing, and transportation areas.

Houtao Deng is a data science researcher and practitioner. He developed several new decision tree methods such as inTrees. He has built data-driven products for forecasting, scheduling, pricing, recommendation, fraud detection, and image recognition.

作者簡介(中文翻譯)

黃帥是華盛頓大學工業與系統工程系的副教授。他進行跨學科的研究,專注於機器學習、數據分析和應用運籌學,並應用於醫療保健、製造和交通領域。

鄧厚濤是一位數據科學研究員和實踐者。他開發了幾種新的決策樹方法,例如 inTrees。他為預測、排程、定價、推薦、詐騙檢測和圖像識別等領域構建了數據驅動的產品。

最後瀏覽商品 (19)