Linear Algebra and Its Applications with R
暫譯: 線性代數及其在 R 中的應用
Yoshida, Ruriko
- 出版商: CRC
- 出版日期: 2021-06-28
- 售價: $4,110
- 貴賓價: 9.5 折 $3,905
- 語言: 英文
- 頁數: 440
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 0367486849
- ISBN-13: 9780367486846
-
相關分類:
線性代數 Linear-algebra
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$2,470$2,347 -
$2,200$2,090
商品描述
The book developed from the need to teach a linear algebra course to students focused on data science and bioinformatics programs. These students tend not to realize the importance of linear algebra in applied sciences since traditional linear algebra courses tend to cover mathematical contexts but not the computational aspect of linear algebra or its applications to data science and bioinformatics.
The author presents the topics in a traditional course yet offers lectures as well as lab exercises on simulated and empirical data sets. This textbook provides students a theoretical basis which can then be applied to the practical R and Python problems, providing the tools needed for real-world applications.
Each section starts with working examples to demonstrate how tools from linear algebra can help solve problems in applied science. These exercises start from easy computations, such as computing determinants of matrices, to practical applications on simulated and empirical data sets with R so that students learn how to get started with R along with computational examples in each section and then they learn how to apply what they learn to problems in applied sciences.
This book is designed from first principles to demonstrate the importance of linear algebra through working computational examples with R and python including tutorials on how to install R in the Appendix. If a student has never seen R, they can get started without any additional help.
Since Python is one of the most popular languages in data science, optimization, and computer science, code supplements are available for students who feel more comfortable with Python. R is used primarily for computational examples to develop student's practical computational skills.
Table of Contents
Preface
List of Figures
List of Tables
1. Systems of Linear Equations and Matrices
2. Matrix Arithmetic
3. Deteminants
4. Vector Spaces
5. Inner Product Space
6. Eigen values and Eigen vectors
7. Linear Regression
8. Linear Programming
Network Analysis
Appendices
A) Introduction to RStudio via Amazon Web Service (AWS)
B) Introduction to R
Bibliography
Index
Biography
Dr. Ruriko Yoshida is an Associate Professor of Operations Research at the Naval Postgraduate School. She received her Ph.D. in Mathematics from the University of California, Davis. Her research topics cover a wide variety of areas: applications of algebraic combinatorics to statistical problems such as statistical learning on non-Euclidean spaces, sensor networks, phylogenetics, and phylogenomics. She teaches courses in statistics, stochastic models, probability, and data science.
商品描述(中文翻譯)
這本書的發展源於教授線性代數課程的需求,對象是專注於數據科學和生物資訊學的學生。這些學生往往未能意識到線性代數在應用科學中的重要性,因為傳統的線性代數課程通常涵蓋數學背景,但不涉及線性代數的計算方面或其在數據科學和生物資訊學中的應用。
作者以傳統課程的方式呈現主題,並提供講座以及針對模擬和實證數據集的實驗練習。這本教科書為學生提供了理論基礎,然後可以應用於實際的 R 和 Python 問題,提供實現真實世界應用所需的工具。
每個部分都以實例開始,展示線性代數工具如何幫助解決應用科學中的問題。這些練習從簡單的計算開始,例如計算矩陣的行列式,然後進行針對模擬和實證數據集的實際應用,使用 R 讓學生學會如何開始使用 R,並在每個部分中提供計算範例,然後他們學會如何將所學應用於應用科學中的問題。
這本書從基本原則出發,通過使用 R 和 Python 的計算範例來展示線性代數的重要性,附錄中還包括如何安裝 R 的教程。如果學生從未接觸過 R,他們可以在沒有任何額外幫助的情況下開始學習。
由於 Python 是數據科學、優化和計算機科學中最受歡迎的語言之一,對於更習慣使用 Python 的學生,提供了代碼補充。R 主要用於計算範例,以培養學生的實際計算技能。
目錄
前言
圖表清單
表格清單
1. 線性方程組與矩陣
2. 矩陣運算
3. 行列式
4. 向量空間
5. 內積空間
6. 特徵值與特徵向量
7. 線性回歸
8. 線性規劃
網絡分析
附錄
A) 通過亞馬遜網絡服務 (AWS) 介紹 RStudio
B) R 介紹
參考文獻
索引
傳記
**吉田瑠璃子博士** 是海軍研究生院的運籌學副教授。她在加州大學戴維斯分校獲得數學博士學位。她的研究主題涵蓋多個領域:代數組合學在統計問題中的應用,例如在非歐幾里得空間上的統計學習、傳感器網絡、系統發育學和系統基因組學。她教授統計學、隨機模型、概率和數據科學的課程。
作者簡介
Dr. Ruriko Yoshida is an Associate Professor of Operations Research at the Naval Postgraduate School. She received her Ph.D. in Mathematics from the University of California, Davis. Her research topics cover a wide variety of areas: applications of algebraic combinatorics to statistical problems such as statistical learning on non-Euclidean spaces, sensor networks, phylogenetics, and phylogenomics. She teaches courses in statistics, stochastic models, probability, and data science.
作者簡介(中文翻譯)
吉田瑠璃子博士是海軍研究生院的運籌學副教授。她在加州大學戴維斯分校獲得數學博士學位。她的研究主題涵蓋多個領域:代數組合學在統計問題上的應用,例如在非歐幾里得空間上的統計學習、感測器網路、系統發育學和系統基因組學。她教授統計學、隨機模型、概率論和數據科學等課程。