Applied Genetic Programming and Machine Learning
暫譯: 應用遺傳程式設計與機器學習

Iba, Hitoshi, Hasegawa, Yoshihiko, Paul, Topon Kumar

商品描述

What do financial data prediction, day-trading rule development, and bio-marker selection have in common? They are just a few of the tasks that could potentially be resolved with genetic programming and machine learning techniques. Written by leaders in this field, Applied Genetic Programming and Machine Learning delineates the extension of Genetic Programming (GP) for practical applications.





Reflecting rapidly developing concepts and emerging paradigms, this book outlines how to use machine learning techniques, make learning operators that efficiently sample a search space, navigate the search process through the design of objective fitness functions, and examine the search performance of the evolutionary system. It provides a methodology for integrating GP and machine learning techniques, establishing a robust evolutionary framework for addressing tasks from areas such as chaotic time-series prediction, system identification, financial forecasting, classification, and data mining.





The book provides a starting point for the research of extended GP frameworks with the integration of several machine learning schemes. Drawing on empirical studies taken from fields such as system identification, finanical engineering, and bio-informatics, it demonstrates how the proposed methodology can be useful in practical inductive problem solving.

商品描述(中文翻譯)

金融數據預測、日內交易規則開發和生物標記選擇有什麼共同點?這些都是可以透過遺傳編程(Genetic Programming, GP)和機器學習技術潛在解決的任務。《應用遺傳編程與機器學習》(Applied Genetic Programming and Machine Learning)一書由該領域的領導者撰寫,闡述了遺傳編程在實際應用中的擴展。

本書反映了快速發展的概念和新興範式,概述了如何使用機器學習技術,製作有效取樣搜尋空間的學習運算子,通過設計目標適應度函數來導航搜尋過程,並檢查進化系統的搜尋性能。它提供了一種將遺傳編程與機器學習技術整合的方法論,建立了一個穩健的進化框架,以解決來自混沌時間序列預測、系統識別、金融預測、分類和數據挖掘等領域的任務。

本書為擴展的遺傳編程框架的研究提供了一個起點,並整合了幾種機器學習方案。通過來自系統識別、金融工程和生物資訊學等領域的實證研究,展示了所提出的方法論在實際歸納問題解決中的實用性。

作者簡介

Iba, Hitoshi; Hasegawa, Yoshihiko; Paul, Topon Kumar

作者簡介(中文翻譯)

伊場仁志;長谷川義彥;保羅·托朋·庫馬爾