Applied Meta-Analysis with R and Stata
暫譯: 使用 R 和 Stata 的應用型元分析
Chen, Ding-Geng (Din), Peace, Karl E.
- 出版商: CRC
- 出版日期: 2021-03-31
- 售價: $5,550
- 貴賓價: 9.5 折 $5,273
- 語言: 英文
- 頁數: 544
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 0367183838
- ISBN-13: 9780367183837
-
相關分類:
R 語言
-
其他版本:
Applied Meta-Analysis with R and Stata
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,715Introduction to Probability, 2/e (Hardcover)
-
$599$569 -
$680$612 -
$680$537 -
$2,520R for Data Science: Import, Tidy, Transform, Visualize, and Model Data, 2/e (Paperback)
商品描述
Applied Meta-Analysis Using R and Stata, Second Edition provides a thorough presentation of statistical meta-analyses (MA) with step-by-step implementations using R/Stata. The authors develop analysis step-by-step using appropriate R/Stata functions, which enables readers to gain an understanding of meta-analysis methods and R/Stata implementation so that they can use these two popular software packages to analyze their own meta-data. Each chapter gives examples of real studies compiled from the literature. After presenting the data and necessary background for understanding the applications, various methods for analyzing meta-data are introduced. The authors then develop analysis code using the appropriate R/Stata packages and functions.
What's New in the Second Edition
- Adds Stata programs along with the R programs for Meta-Analysis.
- Updates all the statistical Meta-Analyses with R/Stata programs.
- Covers fixed-effects and random-effects MA, meta-regression, MA with rare-event, and MA-IPD vs. MA-SS.
- Adds five new chapters on multivariate MA, publication bias, missing data in MA, MA in evaluating diagnostic accuracy, and network MA.
Suitable as a graduate-level text for a meta-data analysis course, the book is also a valuable reference for practitioners and biostatisticians (even those with little or no experience in using R or Stata) in public health, medical research, governmental agencies, and the pharmaceutical industry.
商品描述(中文翻譯)
《使用 R 和 Stata 的應用型統計元分析(第二版)》提供了統計元分析(MA)的全面介紹,並逐步展示如何使用 R/Stata 實現。作者使用適當的 R/Stata 函數逐步開展分析,使讀者能夠理解元分析方法及其在 R/Stata 中的實現,從而能夠利用這兩個流行的軟體包來分析自己的元數據。每一章都提供了來自文獻的真實研究範例。在介紹數據和理解應用所需的背景後,介紹了分析元數據的各種方法。然後,作者使用適當的 R/Stata 套件和函數開發分析代碼。
第二版的新內容
- 新增 Stata 程式,與 R 程式一起用於元分析。
- 更新所有使用 R/Stata 程式的統計元分析。
- 涵蓋固定效應和隨機效應的 MA、元回歸、稀有事件的 MA,以及 MA-IPD 與 MA-SS 的比較。
- 新增五章內容,涵蓋多變量 MA、出版偏差、MA 中的缺失數據、評估診斷準確性的 MA,以及網絡 MA。
本書適合作為研究生級別的元數據分析課程教材,對於公共衛生、醫學研究、政府機構和製藥行業的從業人員和生物統計學家(即使是對 R 或 Stata 幾乎沒有經驗的人)來說,也是一本有價值的參考書。
作者簡介
Ding-Geng (Din) Chen is a fellow of American Statistical Association and currently the Wallace H. Kuralt Distinguished Professor at the University of North Carolina-Chapel Hill, USA. Formerly, he was a Professor of Biostatistics at the University of Rochester, New York, USA, the Karl E. Peace Endowed Eminent Scholar Chair and professor in Biostatistics in the Jiann-Ping Hsu College of Public Health at Georgia Southern University, USA, and a professor of statistics at South Dakota Stata University, USA. Dr. Chen's research interests include clinical trial biostatistical methodological development in Bayesian models, survival analysis, multi-level modelling and longitudinal data analysis, and statistical meta-analysis. He has published more than 200 refereed papers and co-authored/co-edited 30 book in statistics.
Karl E. Peace is the Georgia Cancer Coalition Distinguished Cancer Scholar, Founding Director of the Center for Biostatistics, Professor of Biostatistics, and Senior Research Scientist in the Jiann-Ping Hsu College of Public Health at Georgia Southern University (GSU). Dr. Peace has made pivotal contributions in the development and approval of drugs to treat numerous diseases and disorders. A fellow of the ASA, he has been a recipient of many honors, including the Drug Information Association Outstanding Service Award, the American Public Health Association Statistics Section Award, The First recipient of the President's Medal for outstanding contributions to GSU, and recognition by the Georgia and US Houses of Representatives, and the Virginia House of Delegates.
作者簡介(中文翻譯)
陳丁耕(Din Chen)是美國統計學會的會士,目前擔任美國北卡羅來納州教堂山分校的華萊士·H·庫拉特傑出教授。之前,他曾是美國紐約羅徹斯特大學的生物統計學教授、喬治亞南方大學健行公共衛生學院的卡爾·E·皮斯捐贈傑出學者主席及生物統計學教授,以及美國南達科他州立大學的統計學教授。陳博士的研究興趣包括貝葉斯模型的臨床試驗生物統計方法開發、生存分析、多層次建模和縱向數據分析,以及統計元分析。他已發表超過200篇經過審核的論文,並共同撰寫/編輯了30本統計學書籍。
卡爾·E·皮斯(Karl E. Peace)是喬治亞癌症聯盟傑出癌症學者、統計學中心的創始主任、生物統計學教授,以及喬治亞南方大學(GSU)健行公共衛生學院的高級研究科學家。皮斯博士在開發和批准治療多種疾病和障礙的藥物方面做出了關鍵貢獻。作為美國統計學會的會士,他獲得了許多榮譽,包括藥物信息協會傑出服務獎、美國公共衛生協會統計部門獎、GSU傑出貢獻的總統獎章的首位獲得者,以及喬治亞州和美國眾議院及維吉尼亞州代表大會的表彰。