Principles and Labs for Deep Learning
暫譯: 深度學習原則與實驗室
Huang, Shih-Chia, Le, Trung-Hieu
- 出版商: Academic Press
- 出版日期: 2021-06-25
- 售價: $4,570
- 貴賓價: 9.5 折 $4,342
- 語言: 英文
- 頁數: 364
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0323901980
- ISBN-13: 9780323901987
-
相關分類:
DeepLearning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Principles and Labs for Deep Learning provides the knowledge and techniques needed to help readers design and develop deep learning models. Deep Learning techniques are introduced through theory, comprehensively illustrated, explained through the TensorFlow source code examples, and analyzed through the visualization of results. The structured methods and labs provided by Dr. Huang and Dr. Le enable readers to become proficient in TensorFlow to build deep Convolutional Neural Networks (CNNs) through custom APIs, high-level Keras APIs, Keras Applications, and TensorFlow Hub. Each chapter has one corresponding Lab with step-by-step instruction to help the reader practice and accomplish a specific learning outcome.
Deep Learning has been successfully applied in diverse fields such as computer vision, audio processing, robotics, natural language processing, bioinformatics and chemistry. Because of the huge scope of knowledge in Deep Learning, a lot of time is required to understand and deploy useful, working applications, hence the importance of this new resource. Both theory lessons and experiments are included in each chapter to introduce the techniques and provide source code examples to practice using them. All Labs for this book are placed on GitHub to facilitate the download. The book is written based on the assumption that the reader knows basic Python for programming and basic Machine Learning.
商品描述(中文翻譯)
《深度學習的原則與實驗室》提供了幫助讀者設計和開發深度學習模型所需的知識和技術。深度學習技術通過理論介紹,全面說明,通過 TensorFlow 源代碼示例進行解釋,並通過結果的可視化進行分析。黃博士和樂博士提供的結構化方法和實驗室使讀者能夠熟練掌握 TensorFlow,通過自定義 API、高階 Keras API、Keras 應用程序和 TensorFlow Hub 構建深度卷積神經網絡 (CNN)。每一章都有一個相應的實驗室,提供逐步指導,幫助讀者練習並達成特定的學習成果。
深度學習已成功應用於計算機視覺、音頻處理、機器人技術、自然語言處理、生物信息學和化學等多個領域。由於深度學習的知識範圍廣泛,理解和部署有用的工作應用程序需要大量時間,因此這本新資源的重要性不言而喻。每一章都包含理論課程和實驗,以介紹技術並提供源代碼示例以供練習。本書的所有實驗室都放在 GitHub 上以方便下載。本書假設讀者具備基本的 Python 編程知識和基本的機器學習知識。