Artificial Intelligence: A Guide to Intelligent Systems, 2/e (Hardcover)
暫譯: 人工智慧:智能系統指南(第二版,精裝本)

Michael Negnevitsky

  • 出版商: Addison Wesley
  • 出版日期: 2004-11-12
  • 售價: $380
  • 語言: 英文
  • 頁數: 440
  • 裝訂: Hardcover
  • ISBN: 0321204662
  • ISBN-13: 9780321204660
  • 相關分類: 人工智慧
  • 已過版

買這商品的人也買了...

商品描述

Description:

Artificial Intelligence is one of the most rapidly evolving subjects within the computing/engineering curriculum, with an emphasis on creating practical applications from hybrid techniques. Despite this, the traditional textbooks continue to expect mathematical and programming expertise beyond the scope of current undergraduates and focus on areas not relevant to many of today's courses.
 
Negnevitsky shows students how to build intelligent systems drawing on techniques from knowledge-based systems, neural networks, fuzzy systems, evolutionary computation and now also intelligent agents. The principles behind these techniques are explained without resorting to complex mathematics, showing how the various techniques are implemented, when they are useful and when they are not. No particular programming language is assumed and the book does not tie itself to any of the software tools available. However, available tools and their uses will be described and program examples will be given in Java.
 
The lack of assumed prior knowledge makes this book ideal for any introductory courses in artificial intelligence or intelligent systems design, while the contemporary coverage means more advanced students will benefit by discovering the latest state-of-the-art techniques.
 
 
 
Table of Contents:
1 Introduction To Knowledge-Based Intelligent Systems
1.1 Intelligent Machines, Or What Machines Can Do
1.2 The History Of Artificial Intelligence, Or From The ‘Dark Ages’
To Knowledge-Based Systems
1.3 Summary
Questions For Review
References
2 Rule-Based Expert Systems
2.1 Introduction, Or What Is Knowledge?
2.2 Rules As A Knowledge Representation Technique
2.3 The Main Players In The Expert System Development Team
2.4 Structure Of A Rule-Based Expert System
2.5 Fundamental Characteristics Of An Expert System
2.6 Forward Chaining And Backward Chaining Inference Techniques
2.7 MEDIA ADVISOR: A Demonstration Rule-Based Expert System
2.8 Conflict Resolution
2.9 Advantages And Disadvantages Of Rule-Based Expert Systems
2.10 Summary
Questions For Review
References
3 Uncertainty Management In Rule-Based Expert Systems
3.1 Introduction, Or What Is Uncertainty?
3.2 Basic Probability Theory
3.3 Bayesian Reasoning
3.4 FORECAST: Bayesian Accumulation Of Evidence
3.5 Bias Of The Bayesian Mesod
3.6 Certainty Factors Theory And Evidential Reasoning
3.7 FORECAST: An Application Of Certainty Factors
3.8 Comparison Of Bayesian Reasoning And Certainty Factors
3.9 Summary
Questions For Review
References
4 Fuzzy Expert Systems
4.1 Introduction, Or What Is Fuzzy Thinking?
4.2 Fuzzy Sets
4.3 Linguistic Variables And Hedges
4.4 Operations Of Fuzzy Sets
4.5 Fuzzy Rules
4.6 Fuzzy Inference
4.7 Building A Fuzzy Expert System
4.8 Summary
Questions For Review
References
Bibliography
5 Frame-Based Expert Systems
5.1 Introduction, Or What Is A Frame?
5.2 Frames As A Knowledge Representation Technique
5.3 Inference In Frame-Based Experts
5.4 Methods And Demons
5.5 Interaction Of Frames And Rules
5.6 Buy Smart: A Frame-Based Expert System
5.7 Summary
Questions For Review
References
Bibliography
6 Artificial Neural Networks
6.1 Introduction, Or How The Brain Works
6.2 The Neuron As A Simple Computing Element
6.3 The Perceptron
6.4 Multilayer Neural Networks
6.5 Accelerated Learning In Multilayer Neural Networks
6.6 The Hopfield Network
6.7 Bidirectional Associative Memories
6.8 Self-Organising Neural Networks
6.9 Summary
Questions For Review
References
7 Evolutionary Computation
7.1 Introduction, Or Can Evolution Be Intelligent?
7.2 Simulation Of Natural Evolution
7.3 Genetic Algorithms
7.4 Why Genetic Algorithms Work
7.5 Case Study: Maintenance Scheduling With Genetic Algorithms
7.6 Evolutionary Strategies
7.7 Genetic Programming
7.8 Summary
Questions For Review
References
8 Hybrid Intelligent Systems
8.1 Introduction, Or How To Combine German Mechanics With Italian Love
8.2 Neural Expert Systems
8.3 Neuro-Fuzzy Systems
8.4 ANFIS: Adaptive Neuro-Fuzy Inference System
8.5 Evolutionary Neural Networks
8.6 Fuzzy Evolutionary Systems
8.7 Summary
Questions For Review
References
9 Knowledge Engineering And Data Mining
9.1 Introduction, Or What Is Knowledge Engineering?
9.2 Will An Expert System Work For My Problem?
9.3 Will A Fuzzy Expert System Work For My Problem?
9.4 Will A Neural Network Work For My Problem?
9.5 Will Genetic Algorithms Work For My Problem?
9.6 Will A Neuro-Fuzzy System Work For My Problem?
9.7 Data Mining And Knowledge Discovery
9.8 Summary
Questions For Review
References
Glossary
Appendix
Index

商品描述(中文翻譯)

**描述:**
人工智慧是計算機/工程課程中發展最快的主題之一,重點在於從混合技術中創造實用應用。儘管如此,傳統教科書仍然期望學生具備超出當前本科生範疇的數學和程式設計專業知識,並專注於許多當今課程不相關的領域。

Negnevitsky 向學生展示如何利用知識基礎系統、神經網絡、模糊系統、進化計算以及現在的智能代理等技術來構建智能系統。這些技術背後的原則不依賴於複雜的數學,展示了各種技術的實施方式、何時有用以及何時無用。本書不假設特定的程式語言,也不將自己與任何可用的軟體工具綁定。然而,將描述可用的工具及其用途,並提供 Java 的程式範例。

缺乏假設的先前知識使本書非常適合任何人工智慧或智能系統設計的入門課程,而當代的內容涵蓋意味著更高級的學生將通過發現最新的尖端技術而受益。

**目錄:**
1 知識基礎智能系統介紹
1.1 智能機器,或機器能做什麼
1.2 人工智慧的歷史,或從「黑暗時代」到知識基礎系統
1.3 總結
回顧問題
參考文獻
2 基於規則的專家系統
2.1 介紹,或什麼是知識?
2.2 規則作為知識表示技術
2.3 專家系統開發團隊的主要成員
2.4 基於規則的專家系統的結構
2.5 專家系統的基本特徵
2.6 前向鏈結和後向鏈結推理技術
2.7 媒體顧問:一個演示的基於規則的專家系統
2.8 衝突解決
2.9 基於規則的專家系統的優缺點
2.10 總結
回顧問題
參考文獻
3 基於規則的專家系統中的不確定性管理
3.1 介紹,或什麼是不確定性?
3.2 基本概率理論
3.3 貝葉斯推理
3.4 FORECAST:貝葉斯證據累積
3.5 貝葉斯中介的偏見
3.6 確定性因子理論和證據推理
3.7 FORECAST:確定性因子的應用
3.8 貝葉斯推理和確定性因子的比較
3.9 總結
回顧問題
參考文獻
4 模糊專家系統
4.1 介紹,或什麼是模糊思維?
4.2 模糊集合
4.3 語言變數和邊界
4.4 模糊集合的運算
4.5 模糊規則
4.6 模糊推理
4.7 構建模糊專家系統
4.8 總結
回顧問題
參考文獻
參考書目
5 基於框架的專家系統
5.1 介紹,或什麼是框架?
5.2 框架作為知識表示技術
5.3 基於框架的專家推理
5.4 方法和惡魔
5.5 框架和規則的互動
5.6 Buy Smart:一個基於框架的專家系統
5.7 總結
回顧問題
參考文獻
參考書目
6 人工神經網絡
6.1 介紹,或大腦如何運作
6.2 神經元作為簡單的計算元素
6.3 感知器
6.4 多層神經網絡
6.5 多層神經網絡中的加速學習
6.6 Hopfield 網絡
6.7 雙向聯想記憶
6.8 自組織神經網絡
6.9 總結
回顧問題
參考文獻
7 進化計算
7.1 介紹,或進化能夠智能嗎?
7.2 自然進化的模擬
7.3 遺傳算法
7.4 為什麼遺傳算法有效
7.5 案例研究:使用遺傳算法的維護排程
7.6 進化策略
7.7 遺傳編程
7.8 總結
回顧問題
參考文獻
8 混合智能系統
8.1 介紹,或如何將德國機械與意大利愛情結合
8.2 神經專家系統
8.3 神經模糊系統
8.4 ANFIS:自適應神經模糊推理系統
8.5 進化神經網絡
8.6 模糊進化系統
8.7 總結
回顧問題
參考文獻
9 知識工程與資料探勘
9.1 介紹,或什麼是知識工程?
9.2 專家系統能解決我的問題嗎?
9.3 模糊專家系統能解決我的問題嗎?
9.4 神經網絡能解決我的問題嗎?
9.5 遺傳算法能解決我的問題嗎?
9.6 神經模糊系統能解決我的問題嗎?
9.7 資料探勘與知識發現
9.8 總結
回顧問題
參考文獻
術語表
附錄
索引