Dataset Shift in Machine Learning
暫譯: 機器學習中的資料集偏移
Quinonero-Candela, Joaquin, Sugiyama, Masashi, Schwaighofer, Anton
- 出版商: Summit Valley Press
- 出版日期: 2022-06-07
- 售價: $1,940
- 貴賓價: 9.5 折 $1,843
- 語言: 英文
- 頁數: 248
- 裝訂: Quality Paper - also called trade paper
- ISBN: 026254587X
- ISBN-13: 9780262545877
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
商品描述
An overview of recent efforts in the machine learning community to deal with dataset and covariate shift, which occurs when test and training inputs and outputs have different distributions. Dataset shift is a common problem in predictive modeling that occurs when the joint distribution of inputs and outputs differs between training and test stages. Covariate shift, a particular case of dataset shift, occurs when only the input distribution changes. Dataset shift is present in most practical applications, for reasons ranging from the bias introduced by experimental design to the irreproducibility of the testing conditions at training time. (An example is -email spam filtering, which may fail to recognize spam that differs in form from the spam the automatic filter has been built on.) Despite this, and despite the attention given to the apparently similar problems of semi-supervised learning and active learning, dataset shift has received relatively little attention in the machine learning community until recently. This volume offers an overview of current efforts to deal with dataset and covariate shift. The chapters offer a mathematical and philosophical introduction to the problem, place dataset shift in relationship to transfer learning, transduction, local learning, active learning, and semi-supervised learning, provide theoretical views of dataset and covariate shift (including decision theoretic and Bayesian perspectives), and present algorithms for covariate shift. Contributors Shai Ben-David, Steffen Bickel, Karsten Borgwardt, Michael Brückner, David Corfield, Amir Globerson, Arthur Gretton, Lars Kai Hansen, Matthias Hein, Jiayuan Huang, Choon Hui Teo, Takafumi Kanamori, Klaus-Robert Müller, Sam Roweis, Neil Rubens, Tobias Scheffer, Marcel Schmittfull, Bernhard Schölkopf Hidetoshi Shimodaira, Alex Smola, Amos Storkey, Masashi Sugiyama
商品描述(中文翻譯)
近期機器學習社群在處理資料集和協變移位方面的努力概述,當測試和訓練的輸入和輸出具有不同的分佈時,便會發生此情況。
資料集移位是預測建模中常見的問題,當輸入和輸出的聯合分佈在訓練和測試階段之間有所不同時便會發生。協變移位是資料集移位的一種特例,當只有輸入分佈發生變化時便會出現。資料集移位在大多數實際應用中都存在,原因包括實驗設計引入的偏差以及訓練時測試條件的不可重現性。(例如,電子郵件垃圾郵件過濾,可能無法識別與自動過濾器所建立的垃圾郵件形式不同的垃圾郵件。)儘管如此,儘管半監督學習和主動學習的類似問題受到關注,資料集移位在機器學習社群中直到最近才受到相對較少的重視。本書提供了當前應對資料集和協變移位的努力概述。各章節提供了對該問題的數學和哲學介紹,將資料集移位與轉移學習、傳導學習、本地學習、主動學習和半監督學習進行關聯,提供資料集和協變移位的理論觀點(包括決策理論和貝葉斯觀點),並提出協變移位的演算法。貢獻者 Shai Ben-David, Steffen Bickel, Karsten Borgwardt, Michael Brückner, David Corfield, Amir Globerson, Arthur Gretton, Lars Kai Hansen, Matthias Hein, Jiayuan Huang, Choon Hui Teo, Takafumi Kanamori, Klaus-Robert Müller, Sam Roweis, Neil Rubens, Tobias Scheffer, Marcel Schmittfull, Bernhard Schölkopf, Hidetoshi Shimodaira, Alex Smola, Amos Storkey, Masashi Sugiyama作者簡介
Joaquin Quiñonero-Candela
Joaquin Quiñonero-Candela is a Researcher in the Online Services and Advertising Group at Microsoft Research Cambridge, U.K.
Masashi Sugiyama
Masashi Sugiyama is Director of the RIKEN Center for Advanced Intelligence Project and Professor of Computer Science at the University of Tokyo.
Anton Schwaighofer
Anton Schwaighofer is an Applied Researcher in the Online Services and Advertising Group at Microsoft Research, Cambridge, U.K.
Neil D. Lawrence
Neil D. Lawrence is Senior Lecturer and Member of the Machine Learning and Optimisation Research Group in the School of Computer Science at the University of Manchester.
Joaquin Quiñonero-Candela is a Researcher in the Online Services and Advertising Group at Microsoft Research Cambridge, U.K.
Masashi Sugiyama
Masashi Sugiyama is Director of the RIKEN Center for Advanced Intelligence Project and Professor of Computer Science at the University of Tokyo.
Anton Schwaighofer
Anton Schwaighofer is an Applied Researcher in the Online Services and Advertising Group at Microsoft Research, Cambridge, U.K.
Neil D. Lawrence
Neil D. Lawrence is Senior Lecturer and Member of the Machine Learning and Optimisation Research Group in the School of Computer Science at the University of Manchester.
作者簡介(中文翻譯)
**華金·基尼奧內羅-坎德拉**
華金·基尼奧內羅-坎德拉是微軟研究院英國劍橋在線服務與廣告組的研究員。
**杉山雅史**
杉山雅史是RIKEN先進智慧專案中心的主任,以及東京大學計算機科學的教授。
**安東·施瓦伊霍費**
安東·施瓦伊霍費是微軟研究院英國劍橋在線服務與廣告組的應用研究員。
**尼爾·D·勞倫斯**
尼爾·D·勞倫斯是曼徹斯特大學計算機科學學院的高級講師及機器學習與優化研究小組的成員。