Introduction to Statistical Relational Learning
暫譯: 統計關聯學習導論
Getoor, Lise, Taskar, Ben, Koller, Daphne
- 出版商: Summit Valley Press
- 出版日期: 2019-09-22
- 售價: $1,925
- 貴賓價: 9.8 折 $1,887
- 語言: 英文
- 頁數: 608
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0262538687
- ISBN-13: 9780262538688
-
相關分類:
SQL
立即出貨 (庫存 < 4)
買這商品的人也買了...
相關主題
商品描述
Advanced statistical modeling and knowledge representation techniques for a newly emerging area of machine learning and probabilistic reasoning; includes introductory material, tutorials for different proposed approaches, and applications.
Handling inherent uncertainty and exploiting compositional structure are fundamental to understanding and designing large-scale systems. Statistical relational learning builds on ideas from probability theory and statistics to address uncertainty while incorporating tools from logic, databases and programming languages to represent structure. In Introduction to Statistical Relational Learning, leading researchers in this emerging area of machine learning describe current formalisms, models, and algorithms that enable effective and robust reasoning about richly structured systems and data. The early chapters provide tutorials for material used in later chapters, offering introductions to representation, inference and learning in graphical models, and logic. The book then describes object-oriented approaches, including probabilistic relational models, relational Markov networks, and probabilistic entity-relationship models as well as logic-based formalisms including Bayesian logic programs, Markov logic, and stochastic logic programs. Later chapters discuss such topics as probabilistic models with unknown objects, relational dependency networks, reinforcement learning in relational domains, and information extraction. By presenting a variety of approaches, the book highlights commonalities and clarifies important differences among proposed approaches and, along the way, identifies important representational and algorithmic issues. Numerous applications are provided throughout.
商品描述(中文翻譯)
**進階統計建模與知識表示技術,針對新興的機器學習與機率推理領域;包括入門材料、不同提議方法的教程及應用。**
處理固有的不確定性並利用組合結構是理解和設計大型系統的基本要素。統計關聯學習基於機率論和統計學的概念,旨在解決不確定性,同時結合邏輯、資料庫和程式語言的工具來表示結構。在《統計關聯學習導論》中,這一新興機器學習領域的領先研究者描述了當前的形式主義、模型和算法,這些都能有效且穩健地推理豐富結構的系統和數據。前幾章提供了後續章節所用材料的教程,介紹了圖形模型中的表示、推理和學習,以及邏輯。接著,書中描述了物件導向的方法,包括機率關聯模型、關聯馬可夫網絡和機率實體關聯模型,以及基於邏輯的形式主義,包括貝葉斯邏輯程式、馬可夫邏輯和隨機邏輯程式。後面的章節討論了如未知物件的機率模型、關聯依賴網絡、關聯領域中的強化學習和信息提取等主題。通過呈現多種方法,這本書突顯了共同點並澄清了提議方法之間的重要差異,並在此過程中識別出重要的表示和算法問題。全書提供了眾多應用案例。