Big Data Is Not a Monolith (Information Policy)
暫譯: 大數據不是單一體系 (資訊政策)
- 出版商: MIT
- 出版日期: 2016-10-21
- 售價: $1,430
- 貴賓價: 9.5 折 $1,359
- 語言: 英文
- 頁數: 312
- 裝訂: Paperback
- ISBN: 0262529483
- ISBN-13: 9780262529488
-
相關分類:
大數據 Big-data
海外代購書籍(需單獨結帳)
商品描述
Big data is ubiquitous but heterogeneous. Big data can be used to tally clicks and traffic on web pages, find patterns in stock trades, track consumer preferences, identify linguistic correlations in large corpuses of texts. This book examines big data not as an undifferentiated whole but contextually, investigating the varied challenges posed by big data for health, science, law, commerce, and politics. Taken together, the chapters reveal a complex set of problems, practices, and policies.
The advent of big data methodologies has challenged the theory-driven approach to scientific knowledge in favor of a data-driven one. Social media platforms and self-tracking tools change the way we see ourselves and others. The collection of data by corporations and government threatens privacy while promoting transparency. Meanwhile, politicians, policy makers, and ethicists are ill-prepared to deal with big data's ramifications. The contributors look at big data's effect on individuals as it exerts social control through monitoring, mining, and manipulation; big data and society, examining both its empowering and its constraining effects; big data and science, considering issues of data governance, provenance, reuse, and trust; and big data and organizations, discussing data responsibility, "data harm," and decision making.
ContributorsRyan Abbott, Cristina Alaimo, Kent R. Anderson, Mark Andrejevic, Diane E. Bailey, Mike Bailey, Mark Burdon, Fred H. Cate, Jorge L. Contreras, Simon DeDeo, Hamid R. Ekbia, Allison Goodwell, Jannis Kallinikos, Inna Kouper, M. Lynne Markus, Michael Mattioli, Paul Ohm, Scott Peppet, Beth Plale, Jason Portenoy, Julie Rennecker, Katie Shilton, Dan Sholler, Cassidy R. Sugimoto, Isuru Suriarachchi, Jevin D. West
商品描述(中文翻譯)
大數據無處不在,但卻是異質的。大數據可以用來統計網頁的點擊次數和流量、發現股票交易中的模式、追蹤消費者偏好、識別大型文本語料庫中的語言相關性。本書並不將大數據視為一個未經區分的整體,而是從上下文出發,探討大數據在健康、科學、法律、商業和政治等領域所帶來的各種挑戰。綜合各章內容,揭示了一組複雜的問題、實踐和政策。
大數據方法的出現挑戰了以理論為驅動的科學知識觀,轉而支持以數據為驅動的觀點。社交媒體平台和自我追蹤工具改變了我們看待自己和他人的方式。企業和政府對數據的收集威脅了隱私,同時促進了透明度。與此同時,政治家、政策制定者和倫理學家對於大數據的影響準備不足。貢獻者們探討了大數據對個體的影響,因為它通過監控、挖掘和操控施加社會控制;大數據與社會,檢視其賦權和限制的雙重影響;大數據與科學,考慮數據治理、來源、重用和信任等問題;以及大數據與組織,討論數據責任、「數據傷害」和決策制定。
貢獻者:Ryan Abbott, Cristina Alaimo, Kent R. Anderson, Mark Andrejevic, Diane E. Bailey, Mike Bailey, Mark Burdon, Fred H. Cate, Jorge L. Contreras, Simon DeDeo, Hamid R. Ekbia, Allison Goodwell, Jannis Kallinikos, Inna Kouper, M. Lynne Markus, Michael Mattioli, Paul Ohm, Scott Peppet, Beth Plale, Jason Portenoy, Julie Rennecker, Katie Shilton, Dan Sholler, Cassidy R. Sugimoto, Isuru Suriarachchi, Jevin D. West