Dataset Shift in Machine Learning (Hardcover)
暫譯: 機器學習中的資料集偏移 (精裝版)
Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton Schwaighofer, Neil D. Lawrence
- 出版商: MIT
- 出版日期: 2009-02-01
- 售價: $1,575
- 貴賓價: 9.8 折 $1,544
- 語言: 英文
- 頁數: 248
- 裝訂: Hardcover
- ISBN: 0262170051
- ISBN-13: 9780262170055
-
相關分類:
Machine Learning
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$1,050$998 -
$399Relational Database Design Clearly Explained, 2/e (Paperback)
-
$972The Definitive Guide to Samba 3 (Paperback)
-
$1,700$1,615 -
$1,400$1,372 -
$10,000$9,500 -
$1,500$1,470 -
$2,600$2,470 -
$299JavaScript: The Missing Manual
-
$1,311Introduction to Java Programming, Comprehensive Version, 8/e (IE-Paperback)
-
$750$593 -
$945The Android Developer's Cookbook: Building Applications with the Android SDK (Paperback)
-
$850$723 -
$2,190$2,081 -
$840Statistical Analysis: Microsoft Excel 2010 (Paperback)
-
$520$411 -
$1,080$853 -
$520$411 -
$450$356 -
$950$808 -
$680$544 -
$1,575$1,496 -
$580$458 -
$480$379 -
$460$359
商品描述
The chapters offer a mathematical and philosophical introduction to the problem, place dataset shift in relationship to transfer learning, transduction, local learning, active learning, and semi-supervised learning, provide theoretical views of dataset and covariate shift (including decision theoretic and Bayesian perspectives), and present algorithms for covariate shift.
Contributors: Shai Ben-David, Steffen Bickel, Karsten Borgwardt, Michael Brückner, David Corfield, Amir Globerson, Arthur Gretton, Lars Kai Hansen, Matthias Hein, Jiayuan Huang, Takafumi Kanamori, Klaus-Robert Müller, Sam Roweis, Neil Rubens, Tobias Scheffer, Marcel Schmittfull, Bernhard Schölkopf, Hidetoshi Shimodaira, Alex Smola, Amos Storkey, Masashi Sugiyama, Choon Hui Teo
Neural Information Processing series
商品描述(中文翻譯)
資料集偏移(Dataset shift)是預測建模中常見的問題,當輸入和輸出的聯合分佈在訓練階段和測試階段之間有所不同時,就會發生資料集偏移。協變量偏移(Covariate shift)是資料集偏移的一種特殊情況,當只有輸入分佈發生變化時,就會出現協變量偏移。資料集偏移在大多數實際應用中都存在,原因包括實驗設計引入的偏差以及訓練時測試條件的不可重現性。(例如,電子郵件垃圾過濾可能無法識別與自動過濾器所建立的垃圾郵件形式不同的垃圾郵件。)儘管如此,儘管半監督學習和主動學習等看似相似的問題受到關注,但直到最近,資料集偏移在機器學習社群中相對較少受到重視。本書提供了應對資料集和協變量偏移的當前努力的概述。
各章節提供了對該問題的數學和哲學介紹,將資料集偏移與轉移學習(transfer learning)、傳導(transduction)、局部學習(local learning)、主動學習(active learning)和半監督學習(semi-supervised learning)之間的關係進行了闡述,提供了資料集和協變量偏移的理論觀點(包括決策理論和貝葉斯觀點),並提出了協變量偏移的算法。
貢獻者:Shai Ben-David、Steffen Bickel、Karsten Borgwardt、Michael Brückner、David Corfield、Amir Globerson、Arthur Gretton、Lars Kai Hansen、Matthias Hein、Jiayuan Huang、Takafumi Kanamori、Klaus-Robert Müller、Sam Roweis、Neil Rubens、Tobias Scheffer、Marcel Schmittfull、Bernhard Schölkopf、Hidetoshi Shimodaira、Alex Smola、Amos Storkey、Masashi Sugiyama、Choon Hui Teo
《神經資訊處理系列》