The Visual Mind II (Hardcover)
Michele Emmer
- 出版商: MIT
- 出版日期: 2005-04-01
- 售價: $1,500
- 語言: 英文
- 頁數: 712
- 裝訂: Hardcover
- ISBN: 0262050765
- ISBN-13: 9780262050760
立即出貨(限量) (庫存=3)
買這商品的人也買了...
-
$650$553 -
$690$538 -
$720$569 -
$780$616 -
$490$382 -
$490$382 -
$880$695 -
$880$581 -
$650$507 -
$550$468 -
$450$383 -
$580$493 -
$420$332 -
$590$466 -
$800$680 -
$400$360 -
$620$490 -
$580$493 -
$880$616 -
$620$527 -
$290$226 -
$380$323 -
$600$480 -
$360$306 -
$420$332
相關主題
商品描述
Description:
Mathematical forms rendered visually can give aesthetic pleasure; certain works of art -- Max Bill's Moebius band sculpture, for example -- can seem to be mathematics made visible. This collection of essays by artists and mathematicians continues the discussion of the connections between art and mathematics begun in the widely read first volume of The Visual Mind in 1993.
Mathematicians throughout history have created shapes, forms, and relationships, and some of these can be expressed visually. Computer technology allows us to visualize mathematical forms and relationships in new detail using, among other techniques, 3D modeling and animation. The Visual Mind proposes to compare the visual ideas of artists and mathematicians -- not to collect abstract thoughts on a general theme, but to allow one point of view to encounter another. The contributors, who include art historian Linda Dalrymple Henderson and filmmaker Peter Greenaway, examine mathematics and aesthetics; geometry and art; mathematics and art; geometry, computer graphics, and art; and visualization and cinema. They discuss such topics as aesthetics for computers, the Guggenheim Museum in Bilbao, cubism and relativity in twentieth-century art, the aesthetic value of optimal geometry, and mathematics and cinema.
Michele Emmer is Professor of Mathematics at the University of Rome "La Sapienza."
Table of Contents:
Introduction
Michele Emmerxi Section 1. Mathematics and Aesthetics 1 1. The Phenomenology of Mathematical Beauty
Gian-Carlo Rota3 2. Mathematical Beauty and the Evolution of the Standards of Mathematical Proof
James W. McAllister15 3. Aesthetics for Computers, or How to Measure Harmony
Jaroslav Nesetril35 4. Visual Mathematics: Mathematics and Art
Michele Emmer59 Section 2. Geometry and Art 91 5. Life Through Art
Carmen Bonell95 6. John Robinson's Symbolic Sculptures: Knots and Mathematics
Ronald Brown125 7. Geometries of Curvature and Their Aesthetics
Brent Collins141 8. Poetry in Curves: The Guggenheim Museum in Bilbao
Giusppa Di Cristina159 9. Eightfold Way: The Sculpture
Helaman Ferguson and Claire Ferguson187 10. The Geometric Aesthetic
George W. Hart215 11. Art and the Age of the Sciences
Charles Perry235 12. Some Aspects of the Use of Geometry in My Artistic Work
Sylvie Pic253 Section 3. Mathematics and Art 269 13. Local/Global in Mathematics and Painting
Capi Corrales Rodriganez and Laura Tedeschini-Lalli273 14. Visual Knots: Concerning Geometry and Visuality in the Work of Marcel Duchamp
Manuel Corrada309 15. Lunda Symmetry: Where Geometry Meets Art
Paulus Gerdes335 16. Four-Dimensional Space or Space-Time? The Emergence of the Cubism-Relativity Myth in New York in the 1940s
Linda Dalrymple Henderson349 17. "Reverse Perspective": Historical Fallacies and an Alternative View
Clemena Antonova and Martin Kemp399 18. Four-Dimensional Projection: Art and Reality
Tony Robbin433 19 Rational Design versus Artistic Intuition in Stained-Glass Art
Tomas Garcia Salgado449 Section 4. Geometry, Computer Graphics, and Art 469 20 Dynamics, Chaos, and Design
Michael Field473 21. Paul Klee on Computer: Biomathematical Models Help Us Understand His Work
Roberto Giunti495 22. Parameterized Sculpture Families
Carlo H. Sequin527 23. The Aesthetic Value of Optimal Geometry
John M. Sullivan547 Section 5. Mathematics, Visualization, and Cinema 565 24. Mathematics and Cinema
Michele Emmer569 25. Some Organizing Principles
Peter Greenaway601 26. Figures and Characters in the Great Book of Nature
Jean-Marc Levy-Leblond27. Circle Packings and the Sacred Lotus
Tibor Tarnai and Koji Miyazaki647 28. Meander Mazes on Polysphericons
Anthony Phillips667 Contributors 685 Name Index 689 Subject Index 697
商品描述(中文翻譯)
描述:
數學形式的視覺呈現可以帶來美感的滿足感;某些藝術作品,例如Max Bill的Moebius帶雕塑,似乎將數學可視化。這本由藝術家和數學家撰寫的文章集延續了1993年廣受讀者喜愛的第一卷《視覺思維》中關於藝術與數學之間聯繫的討論。
歷史上的數學家創造了形狀、形式和關係,其中一些可以以視覺方式表達。計算機技術使我們能夠使用3D建模和動畫等技術以新的細節來視覺化數學形式和關係。《視覺思維》旨在比較藝術家和數學家的視覺觀念,而不是收集關於一般主題的抽象思考,而是讓一個觀點與另一個觀點相遇。貢獻者包括藝術史學家Linda Dalrymple Henderson和電影製片人Peter Greenaway,他們探討了數學與美學、幾何學與藝術、數學與藝術、幾何學、電腦圖形學和藝術、以及視覺化和電影等主題。他們討論了計算機美學、毕尔巴鄂古根海姆博物馆、二十世紀藝術中的立體主義和相對論、最佳幾何的美學價值,以及數學與電影等。
Michele Emmer是羅馬大學拉斯佩齊亞分校的數學教授。
目錄:
引言
Michele Emmer
第一部分:數學與美學
1. 數學之美學現象學
Gian-Carlo Rota
2. 數學之美與數學證明標準的演變
James W. McAllister
3. 面向計算機的美學,或者如何衡量和諧
Jaroslav Nesetril