Learning Theory from First Principles (Hardcover) (從基本原則學習理論)
Bach, Francis
- 出版商: MIT
- 出版日期: 2024-12-24
- 售價: $2,160
- 貴賓價: 9.8 折 $2,117
- 語言: 英文
- 頁數: 496
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 0262049449
- ISBN-13: 9780262049443
立即出貨 (庫存=1)
相關主題
商品描述
A comprehensive and cutting-edge introduction to the foundations and modern applications of learning theory.
Research has exploded in the field of machine learning resulting in complex mathematical arguments that are hard to grasp for new comers. . In this accessible textbook, Francis Bach presents the foundations and latest advances of learning theory for graduate students as well as researchers who want to acquire a basic mathematical understanding of the most widely used machine learning architectures. Taking the position that learning theory does not exist outside of algorithms that can be run in practice, this book focuses on the theoretical analysis of learning algorithms as it relates to their practical performance. Bach provides the simplest formulations that can be derived from first principles, constructing mathematically rigorous results and proofs without overwhelming students.
- Provides a balanced and unified treatment of most prevalent machine learning methods
- Emphasizes practical application and features only commonly used algorithmic frameworks
- Covers modern topics not found in existing texts, such as overparameterized models and structured prediction
- Integrates coverage of statistical theory, optimization theory, and approximation theory
- Focuses on adaptivity, allowing distinctions between various learning techniques
- Hands-on experiments, illustrative examples, and accompanying code link theoretical guarantees to practical behaviors
商品描述(中文翻譯)
一本全面且前沿的學習理論基礎及現代應用介紹。
在機器學習領域,研究迅速增長,導致複雜的數學論證對新手來說難以理解。在這本易於接觸的教科書中,Francis Bach 為研究生及希望獲得最廣泛使用的機器學習架構基本數學理解的研究者,介紹了學習理論的基礎和最新進展。這本書認為學習理論並不存在於可以實際運行的算法之外,專注於學習算法的理論分析及其與實際表現的關聯。Bach 提供了可以從基本原則推導出的最簡單公式,構建數學上嚴謹的結果和證明,而不會讓學生感到不知所措。
- 提供對最普遍的機器學習方法的平衡和統一處理
- 強調實際應用,僅涵蓋常用的算法框架
- 涵蓋現有文本中未提及的現代主題,如過參數化模型和結構化預測
- 整合統計理論、優化理論和近似理論的內容
- 專注於適應性,允許區分各種學習技術
- 實作實驗、示例和附帶代碼將理論保證與實際行為聯繫起來
作者簡介
Francis Bach is a researcher at Inria where he leads the machine learning team which is part of the Computer Science department at Ecole Normale Supérieure. His research focuses on machine learning and optimization.
作者簡介(中文翻譯)
Francis Bach 是 Inria 的研究員,他領導著機器學習團隊,該團隊隸屬於巴黎高等師範學校的計算機科學系。他的研究專注於機器學習和優化。