Data Feminism
暫譯: 數據女性主義

D'Ignazio, Catherine, Klein, Lauren F.

  • 出版商: Summit Valley Press
  • 出版日期: 2020-03-17
  • 售價: $1,540
  • 貴賓價: 9.5$1,463
  • 語言: 英文
  • 頁數: 328
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 0262044005
  • ISBN-13: 9780262044004
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism.

Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics--one that is informed by intersectional feminist thought.

Illustrating data feminism in action, D'Ignazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever "speak for themselves."

Data Feminism offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed.

商品描述(中文翻譯)

一種受到交叉性女性主義思想啟發的數據科學和數據倫理的新思維方式。

今天,數據科學是一種權力的形式。它被用來揭露不公、改善健康結果以及推翻政府。但它也被用來進行歧視、監控和監視。這種一方面的善良潛力和另一方面的傷害潛力,使得提出以下問題變得至關重要:數據科學是由誰進行的?數據科學是為了誰?數據科學是以誰的利益為考量的?圍繞大數據和數據科學的敘事大多是白人、男性和科技英雄主義的。在《數據女性主義》中,Catherine D'Ignazio 和 Lauren Klein 提出了一種新的數據科學和數據倫理的思維方式——這種思維方式受到交叉性女性主義思想的啟發。

D'Ignazio 和 Klein 透過實例展示數據女性主義的實踐,說明對男性/女性二元對立的挑戰如何有助於挑戰其他層級(且在實證上錯誤)的分類系統。他們解釋了例如情感的理解如何擴展我們對有效數據可視化的想法,以及「隱形勞動」的概念如何揭示我們的自動化系統所需的重大人力努力。他們還展示了為什麼數據從來不會「自我發聲」。

《數據女性主義》為尋求了解女性主義如何幫助他們朝向正義努力的數據科學家提供了策略,也為希望將精力集中在不斷增長的數據科學領域的女性主義者提供了指導。但《數據女性主義》所探討的遠不止性別。它關乎權力,關乎誰擁有權力,誰沒有權力,以及如何挑戰和改變這些權力差異。