All Data Are Local: Thinking Critically in a Data-Driven Society
暫譯: 所有數據都是本地的:在數據驅動社會中進行批判性思考
Loukissas, Yanni Alexander
- 出版商: Summit Valley Press
- 出版日期: 2019-04-30
- 售價: $1,430
- 貴賓價: 9.5 折 $1,359
- 語言: 英文
- 頁數: 272
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 0262039664
- ISBN-13: 9780262039666
海外代購書籍(需單獨結帳)
相關主題
商品描述
How to analyze data settings rather than data sets, acknowledging the meaning-making power of the local.
In our data-driven society, it is too easy to assume the transparency of data. Instead, Yanni Loukissas argues in All Data Are Local, we should approach data sets with an awareness that data are created by humans and their dutiful machines, at a time, in a place, with the instruments at hand, for audiences that are conditioned to receive them. The term data set implies something discrete, complete, and portable, but it is none of those things. Examining a series of data sources important for understanding the state of public life in the United States--Harvard's Arnold Arboretum, the Digital Public Library of America, UCLA's Television News Archive, and the real estate marketplace Zillow--Loukissas shows us how to analyze data settings rather than data sets.
Loukissas sets out six principles: all data are local; data have complex attachments to place; data are collected from heterogeneous sources; data and algorithms are inextricably entangled; interfaces recontextualize data; and data are indexes to local knowledge. He then provides a set of practical guidelines to follow. To make his argument, Loukissas employs a combination of qualitative research on data cultures and exploratory data visualizations. Rebutting the "myth of digital universalism," Loukissas reminds us of the meaning-making power of the local.
商品描述(中文翻譯)
如何分析數據設定而非數據集,承認地方的意義建構力量。
在我們這個數據驅動的社會中,假設數據的透明性是太容易的。然而,Yanni Loukissas在《所有數據都是地方性的》中主張,我們應該以意識到數據是由人類及其忠實的機器在特定時間、特定地點、使用手頭的工具,為那些習慣接收這些數據的觀眾所創造的方式來看待數據集。術語「數據集」暗示著某種離散、完整且可攜帶的東西,但實際上它並不是這樣的。Loukissas檢視了一系列對於理解美國公共生活狀態至關重要的數據來源——哈佛的阿諾德植物園、美國數位公共圖書館、加州大學洛杉磯分校的電視新聞檔案,以及房地產市場Zillow——向我們展示了如何分析數據設定而非數據集。
Loukissas提出了六個原則:所有數據都是地方性的;數據與地點有著複雜的聯繫;數據來自異質的來源;數據與算法密不可分;介面重新詮釋數據;數據是地方知識的指標。接著,他提供了一套實用的指導方針來遵循。為了支持他的論點,Loukissas結合了對數據文化的定性研究和探索性數據視覺化。反駁「數位普遍主義的神話」,Loukissas提醒我們地方的意義建構力量。