Visual Cortex and Deep Networks: Learning Invariant Representations (Computational Neuroscience Series)
暫譯: 視覺皮層與深度網絡:學習不變表示(計算神經科學系列)

Tomaso A. Poggio, Fabio Anselmi

  • 出版商: MIT
  • 出版日期: 2016-09-23
  • 售價: $1,200
  • 貴賓價: 9.8$1,176
  • 語言: 英文
  • 頁數: 136
  • 裝訂: Hardcover
  • ISBN: 0262034727
  • ISBN-13: 9780262034722
  • 相關分類: 人工智慧DeepLearning
  • 立即出貨 (庫存 < 3)

相關主題

商品描述

The ventral visual stream is believed to underlie object recognition in primates. Over the past fifty years, researchers have developed a series of quantitative models that are increasingly faithful to the biological architecture. Recently, deep learning convolution networks -- which do not reflect several important features of the ventral stream architecture and physiology -- have been trained with extremely large datasets, resulting in model neurons that mimic object recognition but do not explain the nature of the computations carried out in the ventral stream. This book develops a mathematical framework that describes learning of invariant representations of the ventral stream and is particularly relevant to deep convolutional learning networks.

The authors propose a theory based on the hypothesis that the main computational goal of the ventral stream is to compute neural representations of images that are invariant to transformations commonly encountered in the visual environment and are learned from unsupervised experience. They describe a general theoretical framework of a computational theory of invariance (with details and proofs offered in appendixes) and then review the application of the theory to the feedforward path of the ventral stream in the primate visual cortex.

商品描述(中文翻譯)

腹側視覺通路被認為是靈長類動物物體識別的基礎。在過去的五十年中,研究人員開發了一系列越來越忠實於生物結構的定量模型。最近,深度學習卷積網絡——這些網絡並未反映腹側通路結構和生理學中的幾個重要特徵——已經使用極大的數據集進行訓練,導致模型神經元模仿物體識別,但無法解釋在腹側通路中進行的計算的本質。本書發展了一個數學框架,描述腹側通路不變表示的學習,並特別與深度卷積學習網絡相關。

作者提出了一個理論,基於這樣的假設:腹側通路的主要計算目標是計算對於視覺環境中常見變換不變的圖像神經表示,並且這些表示是從無監督經驗中學習而來。他們描述了一個不變性計算理論的一般理論框架(詳細內容和證明在附錄中提供),然後回顧該理論在靈長類動物視覺皮層腹側通路前饋路徑中的應用。