Machine Learning in Non-Stationary Environments: Introduction to Covariate Shift Adaptation (Hardcover)
暫譯: 非穩態環境中的機器學習:協變移適應入門(精裝版)
Masashi Sugiyama, Motoaki Kawanabe
- 出版商: MIT
- 出版日期: 2012-04-06
- 售價: $1,980
- 貴賓價: 9.5 折 $1,881
- 語言: 英文
- 頁數: 280
- 裝訂: Hardcover
- ISBN: 0262017091
- ISBN-13: 9780262017091
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,300$1,274 -
$4,530$4,304 -
$1,500$1,470 -
$4,070$3,867 -
$2,090$1,980 -
$2,600$2,470 -
$301機器人系統設計與製作 : Python 語言實現
-
$607深度學習、優化與識別 (Deep Learning,Optimization and Recognition)
-
$301機器人操作系統ROS原理與應用
-
$352ROS 機器人高效編程, 3/e (Effective Robotics Programming with ROS, 3/e)
-
$500ROS 進階實例
-
$2,100$1,995 -
$594$564 -
$580$493 -
$4,690$4,456 -
$1,730$1,644 -
$420$332 -
$2,650$2,518 -
$4,840$4,598 -
$505知識圖譜與深度學習
-
$750$675 -
$750$592 -
$2,960$2,812 -
$6,720$6,384 -
$528$502
相關主題
商品描述
As the power of computing has grown over the past few decades, the field of machine learning has advanced rapidly in both theory and practice. Machine learning methods are usually based on the assumption that the data generation mechanism does not change over time. Yet real-world applications of machine learning, including image recognition, natural language processing, speech recognition, robot control, and bioinformatics, often violate this common assumption. Dealing with non-stationarity is one of modern machine learning's greatest challenges. This book focuses on a specific non-stationary environment known as covariate shift, in which the distributions of inputs (queries) change but the conditional distribution of outputs (answers) is unchanged, and presents machine learning theory, algorithms, and applications to overcome this variety of non-stationarity. After reviewing the state-of-the-art research in the field, the authors discuss topics that include learning under covariate shift, model selection, importance estimation, and active learning. They describe such real world applications of covariate shift adaption as brain-computer interface, speaker identification, and age prediction from facial images. With this book, they aim to encourage future research in machine learning, statistics, and engineering that strives to create truly autonomous learning machines able to learn under non-stationarity.
商品描述(中文翻譯)
隨著計算能力在過去幾十年中的增長,機器學習領域在理論和實踐上都迅速發展。機器學習方法通常基於一個假設,即數據生成機制隨時間不變。然而,機器學習的實際應用,包括圖像識別、自然語言處理、語音識別、機器人控制和生物信息學,往往違反了這一普遍假設。處理非平穩性是現代機器學習面臨的最大挑戰之一。本書專注於一種特定的非平穩環境,稱為協變移(covariate shift),在這種環境中,輸入(查詢)的分佈發生變化,但輸出(答案)的條件分佈保持不變,並介紹了克服這種各種非平穩性的機器學習理論、算法和應用。在回顧該領域的最新研究後,作者討論了包括在協變移下學習、模型選擇、重要性估計和主動學習等主題。他們描述了協變移適應的實際應用,如腦機介面、說話者識別和從面部圖像預測年齡。通過本書,他們旨在鼓勵未來在機器學習、統計學和工程領域的研究,努力創造真正能夠在非平穩性下學習的自主學習機器。