Probabilistic Graphical Models: Principles and Techniques (Hardcover)
暫譯: 機率圖模型:原則與技術 (精裝版)

Daphne Koller, Nir Friedman

  • 出版商: MIT
  • 出版日期: 2009-08-01
  • 售價: $4,900
  • 貴賓價: 9.5$4,655
  • 語言: 英文
  • 頁數: 1270
  • 裝訂: Hardcover
  • ISBN: 0262013193
  • ISBN-13: 9780262013192
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.

Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty.

The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Adaptive Computation and Machine Learning series

商品描述(中文翻譯)

大多數任務需要人類或自動化系統進行推理——根據可用資訊得出結論。本書中介紹的機率圖模型框架提供了一種通用的方法來完成這項任務。這種方法是基於模型的,允許構建可解釋的模型,然後通過推理算法進行操作。這些模型也可以從數據中自動學習,使得在手動構建模型困難甚至不可能的情況下仍然可以使用這種方法。由於不確定性是大多數現實世界應用中無法避免的方面,本書專注於機率模型,這些模型使不確定性變得明確,並提供更忠實於現實的模型。

《機率圖模型》討論了各種模型,涵蓋貝葉斯網絡、無向馬可夫網絡、離散和連續模型,以及處理動態系統和關聯數據的擴展。對於每一類模型,文本描述了三個基本支柱:表示、推理和學習,並介紹了基本概念和進階技術。最後,本書考慮了所提出的框架在因果推理和不確定性下的決策中的應用。

每章的主要文本提供了關鍵思想的詳細技術發展。大多數章節還包括附加材料的框框:技能框,描述技術;案例研究框,討論與文本中描述的方法相關的實證案例,包括在計算機視覺、機器人技術、自然語言理解和計算生物學中的應用;以及概念框,呈現從章節材料中提取的重要概念。講師(和讀者)可以根據特定需求以各種組合分組章節,從核心主題到更技術性進階的材料。

《自適應計算與機器學習系列》