Principles of Semiconductor Devices (Hardcover) (書況略舊有些許黴斑,不介意再下單)
暫譯: 半導體元件原理 (精裝版)

Sima Dimitrijev

買這商品的人也買了...

商品描述

Description:

Quantum mechanical phenomena-including energy bands, energy gaps, holes, and effective mass-constitute the majority of properties unique to semiconductor materials. Understanding how these properties affect the electrical characteristics of semiconductors is vital for engineers working with today's nanoscale devices.

Designed for upper-level undergraduate and graduate courses, Principles of Semiconductor Devices covers the dominant practical applications of semiconductor device theory and applies quantum mechanical concepts and equations to develop the energy-band model. The text presents quantum mechanics through examples related to the energy-band model, providing students with a deeper understanding of the energy-band diagrams used to explain semiconductor device operation. The semiconductor theory is directly linked to the electronic layout and design of integrated circuits.

The author has divided the text into four parts. Part I explains semiconductor physics, and Part II presents the principles of operation and modeling of the fundamental junctions and transistors. Part III discusses the diode, MOSFET, and BJT topics that are needed for circuit design. Part IV introduces photonic devices, microwave FETs, negative-resistance diodes, and power devices. The chapters and the sections in each chapter are organized hierarchically. Core material is presented first, followed by advanced topics, allowing instructors to select more rigorous, design-related topics as they see fit.

 

Table of Contents:

All chapters end with a Summary, Problems, and Review Questions.
PART I: INTRODUCTION TO SEMICONDUCTORS
1. Semiconductor Crystals: Atomic-Bond Model
1.1. Crystal Lattices
1.1.1. Unit Cell
1.1.2. Planes and Directions
1.1.3. Atomic Bonds
1.2. Current Carriers
1.2.1. Two Types of Current Carriers in Semiconductors
1.2.2. N-Type and P-Type Doping
1.2.3. Electroneutrality Equation
1.2.4. Electron and Hole Generation and Recombination in Thermal Equilibrium
1.3 Basics of Crystal Growth and Doping Techniques.
1.3.1 Crystal-Growth Techniques.
1.3.2 Doping Techniques
.
2. Quantum Mechanics and Energy-Band Model
2.1. Electrons as Waves
2.1.1. De Broglie Relationship between Particle and Wave Properties
2.1.2. Wave Function and Wave Packet
2.1.3. Schrodinger Equation
2.2. Energy Levels in Atoms and Energy Bands in Crystals
2.2.1. Atomic Structure
2.2.2. Energy Bands in Metals
2.2.3. Energy Gap and Energy Bands in Semiconductors and Insulators
2.3. Electrons and Holes as Particles
2.3.1 Effective Mass and Real E-K Diagrams.
2.3.2 The Question of Electron Size: The Uncertainty Principle.
2.3.3 Density of Electron States.
2.4. Population of Electron States: Concentrations of Electrons and Holes
2.4.1. Fermi-Dirac Distribution
2.4.2. Maxwell-Boltzmann Approximation and Effective Density of States
2.4.3 Fermi Potential and Doping.
2.4.4 Nonequilibrium Carrier Concentrations and Quasi-Fermi Levels
.
3. Drift
3.1. Energy Bands with Applied Electric Field
3.1.1. Energy-Band Presentation of Drift Current
3.1.2. Resistance and Power Dissipation due to Carrier Scattering
3.2. Ohm's Law, Sheet Resistance, and Conductivity
3.2.1. Designing Integrated-Circuit Resistors
3.2.2. Differential Form of Ohm's Law
3.2.3. Conductivity Ingredients
3.3. Carrier Mobility
3.3.1 Thermal and Drift Velocities.
3.3.2 Mobility Definition.
3.3.3 Scattering Time and Scattering Cross Section.
3.3.4 Mathieson's Rule.
3.3.5 Hall Effect
.
4. Diffusion
4.1. Diffusion-Current Equation
4.2. Diffusion Coefficient
4.2.1. Einstein Relationship
4.2.2. Haynes-Shockley Experiment
4.2.3. Arrhenius Equation
4.3. Basic Continuity Equation
5. Generation and Recombination
5.1. Generation and Recombination Mechanisms
5.2. General Form of the Continuity Equation
5.2.1. Recombination and Generation Rates
5.2.2. Minority-Carrier Lifetime
5.2.3. Diffusion Length
5.3. Generation and Recombination Physics and Shockley-Read-Hall (SRH) Theory
5.3.1. Capture and Emission Rates in Thermal Equilibrium
5.3.2. Steady-State Equation for the Effective Thermal Generation/Recombination Rate
5.3.3. Special Cases
5.3.4. Surface Generation and Recombination
PART II: FUNDAMENTAL DEVICE STRUCTURES
6. P-N Junction
6.1 P-N Junction Principles.
6.1.1. P-N Junction in Thermal Equilibrium: Built-In Voltage.
6.1.2. Reverse-Biased P-N Junction
6.1.3. Forward-Biased P-N Junction
6.1.4. Breakdown Phenomena
6.1.4.1. Avalanche Breakdown
6.1.4.2. Tunneling Breakdown
6.2. DC Model
6.2.1. Basic Current-Voltage (I-V) Equation
6.2.2. Important Second-Order Effects
6.2.3. Temperature Effects
6.3. Capacitance of Reverse-Biased P-N Junction
6.3.1. C-V Dependence
6.3.2. Depletion-Layer Width: Solving the Poisson Equation
6.3.3. SPICE Model for the Depletion-Layer Capacitance
6.4. Stored-Charge Effects
6.4.1. Stored Charge and Transit Time
6.4.2. Relationship between the Transit Time and the Minority-Carrier Lifetime
6.4.3 Switching Characteristics: Reverse-Recovery Time
.
7. Metal-Semiconductor Contact and MOS Capacitor
7.1. Metal-Semiconductor Contact
7.1.1. Schottky Diode: Rectifying Metal-Semiconductor Contact
7.1.2. Ohmic Metal-Semiconductor Contacts
7.2. MOS Capacitor
7.2.1. Properties of the Gate Oxide and the Oxide-Semiconductor Interface
7.2.2. C-V Curve and the Surface-Potential Dependence on Gate Voltage
7.2.3 Energy-Band Diagrams.
7.2.4 Flat-Band Capacitance and Debye Length
.
8. MOSFET
8.1. MOSFET Principles
8.1.1. MOSFET Structure
8.1.2. MOSFET as a Voltage-Controlled Switch
8.1.3 The Threshold Voltage and the Body Effect.
8.1.4 MOSFET as a Voltage-Controlled Current Source: Mechanisms of Current Saturation.
8.2. Principal Current-Voltage Characteristics and Equations
8.2.1. SPICE Level 1 Model
8.2.2. SPICE Level 2 Model
8.2.3. SPICE Level 3 Model: Principal Effects
8.3. Second-Order Effects
8.3.1. Mobility Reduction with Gate Voltage
8.3.2. Velocity Saturation (Mobility Reduction with Drain Voltage)
8.3.3 Finite Output Resistance.
8.3.4. Threshold-Voltage Related Short-Channel Effects
8.3.5. Threshold Voltage Related Narrow-Channel Effects
8.3.6. Subthreshold Current
8.4. Nanoscale MOSFETs
8.4.1. Down-Scaling Benefits and Rules
8.4.2. Leakage Currents
8.4.3. Advanced MOSFETs
8.4.4 Reliability Issues.
8.5. MOS-Based Memory Devices
8.5.1. 1C1T DRAM Cell
8.5.2 Flash-Memory Cell
.
9. BJT
9.1. BJT Principles
9.1.1. BJT as a Voltage-Controlled Current Source
9.1.2. BJT Currents and Gain Definitions
9.1.3 Dependence of a and b Current Gains on Technological Parameters.
9.1.4. The Four Modes of Operation: BJT as a Switch
9.1.5. Complementary BJT
9.1.6. BJT Versus MOSFET
9.2. Principal Current-Voltage Characteristics: Ebers-Moll Model in Spice
9.2.1. Injection Version
9.2.2. Transport Version
9.2.3. SPICE Version
9.3. Second-Order Effects
9.3.1. Early Effect: Finite Dynamic Output Resistance
9.3.2. Parasitic Resistances
9.3.3. Dependence of Common-Emitter Current Gain on Transistor Current: Low-Current Effects
9.3.4. Dependence of Common-Emitter Current Gain on Transistor Current: Gummel-Poon Model for High-Current Effects
9.4. Heterojunction Bipolar Transistor
PART III: DEVICE TECHNOLOGY AND ELECTRONICS
10. Integrated-Circuit Technologies
10.1. A Diode in IC Technology
10.1.1. Basic Structure
10.1.2. Lithography
10.1.3. Process Sequence
10.1.4. Diffusion Profiles
10.2. MOSFET Technologies
10.2.1. Local Oxidation of Silicon (LOCOS)
10.2.2. NMOS Technology
10.2.3. Basic CMOS Technology
10.2.4. Silicon-on-Insulator (SOI) Technology
10.3. Bipolar IC Technologies
10.3.1. IC Structure of NPN BJT
10.3.2. Standard Bipolar Technology Process
10.3.3. Implementation of PNP BJTs, Resistors, Capacitors, and Diodes
10.3.4. Layer Merging
10.3.5. BiCMOS Technology
11. Device Electronics: Equivalent Circuits and Spice Parameters
11.1. Diodes
11.1.1. Static Model and Parameters in SPICE
11.1.2. Large-Signal Equivalent Circuit in SPICE
11.1.3. Parameter Measurement
11.1.4. Small-Signal Equivalent Circuit
11.2. MOSFET
11.2.1. Static Model and Parameters: Level 3 in SPICE
11.2.2. Parameter Measurement
11.2.3. Large-Signal Equivalent Circuit and Dynamic Parameters in SPICE
11.2.4. Simple Digital Model
11.2.5. Small-Signal Equivalent Circuit
11.3. BJT
11.3.1. Static Model and Parameters: Ebers-Moll and Gummel-Poon Levels in SPICE
11.3.2. Parameter Measurement
11.3.3. Large-Signal Equivalent Circuit and Dynamic Parameters in SPICE
11.3.4. Small-Signal Equivalent Circuit
11.3.5. Parasitic IC Elements not Included in Device Models
PART IV: SPECIFIC DEVICES
12. Photonic Devices
12.1. Light Emitting Diodes (LED)
12.2. Photodetectors and Solar Cells
12.2.1. Biasing for Photodetector and Solar-Cell Applications
12.2.2. Carrier Generation in Photodetectors and Solar Cells
12.2.3 Photocurrent Equation.
12.3. Lasers
12.3.1. Stimulated Emission, Inversion Population, and Other Fundamental Concepts
12.3.2. A Typical Heterojunction Laser
13. Microwave FETs and Diodes
13.1. Gallium Arsenide versus Silicon
13.1.1. Dielectric-Semiconductor Interface: Enhancement versus Depletion FETs
13.1.2. Energy Gap
13.1.3. Electron Mobility and Saturation Velocity
13.1.4. Negative Dynamic Resistance
13.2. JFET
13.2.1. JFET Structure
13.2.2. JFET Characteristics
13.2.3. SPICE Model and Parameters
13.3. MESFET
13.3.1. MESFET Structure
13.3.2. MESFET Characteristics
13.3.3. SPICE Model and Parameters
13.4. HEMT
13.4.1. Two-Dimensional Electron Gas (2DEG)
13.4.2. HEMT Structure and Characteristics
13.5. Negative Resistance Diodes
13.5.1. Amplification and Oscillation by Negative Dynamic Resistance
13.5.2. Gunn Diode
13.5.3. IMPATT Diode
13.5.4. Tunnel Diode
14. Power Devices
14.1. Power Diodes
14.1.1. Drift Region in Power Devices
14.1.2. Switching Characteristics
14.1.3. Schottky Diode
14.2. Power MOSFET
14.3. IGBT
14.4. Thyristor
Bibliography
Answers to Selected Problems
Index

商品描述(中文翻譯)

描述:

量子力學現象,包括能帶、能隙、孔洞和有效質量,構成了半導體材料獨特性質的主要部分。了解這些特性如何影響半導體的電氣特性,對於從事當今納米級設備的工程師來說至關重要。

《半導體器件原理》專為高年級本科生和研究生課程設計,涵蓋了半導體器件理論的主要實際應用,並應用量子力學概念和方程式來發展能帶模型。該文本通過與能帶模型相關的例子來呈現量子力學,為學生提供對用於解釋半導體器件運作的能帶圖的更深入理解。半導體理論與集成電路的電子佈局和設計直接相關。

作者將文本分為四個部分。第一部分解釋半導體物理,第二部分介紹基本接面和晶體管的操作原理和建模。第三部分討論二極體、MOSFET和BJT等電路設計所需的主題。第四部分介紹光子器件、微波FET、負阻二極體和功率器件。每章的章節和部分以層次結構組織。核心材料首先呈現,然後是進階主題,讓講師可以根據需要選擇更嚴謹的設計相關主題。

目錄:

所有章節結尾都有摘要、問題和回顧問題。

第一部分:半導體簡介

1. 半導體晶體:原子鍵模型

1.1. 晶格

1.1.1. 單位晶胞

1.1.2. 平面和方向

1.1.3. 原子鍵

1.2. 電流載體

1.2.1. 半導體中的兩種電流載體

1.2.2. N型和P型摻雜

1.2.3. 電中性方程

1.2.4. 在熱平衡下的電子和孔的產生與復合

1.3. 晶體生長和摻雜技術基礎

1.3.1. 晶體生長技術

1.3.2. 摻雜技術

2. 量子力學與能帶模型

2.1. 電子作為波

2.1.1. 德布羅意粒子與波性質的關係

2.1.2. 波函數與波包

2.1.3. 薛丁格方程

2.2. 原子中的能級與晶體中的能帶

2.2.1. 原子結構

2.2.2. 金屬中的能帶

2.2.3. 半導體和絕緣體中的能隙與能帶

2.3. 電子和孔作為粒子

2.3.1. 有效質量和實際E-K圖

2.3.2. 電子大小的問題:不確定性原理

2.3.3. 電子態密度

2.4. 電子態的佔有:電子和孔的濃度

2.4.1. 費米-狄拉克分佈

2.4.2. 馬克士威-玻爾茲曼近似與有效態密度

2.4.3. 費米勢與摻雜

2.4.4. 非平衡載流子濃度與準費米能級

3. 漂移

3.1. 施加電場下的能帶

3.1.1. 漂移電流的能帶表示

3.1.2. 由於載流子散射造成的電阻和功率耗散

3.2. 歐姆定律、薄膜電阻和導電性

3.2.1. 設計集成電路電阻

3.2.2. 歐姆定律的微分形式

3.2.3. 導電性成分

3.3. 載流子遷移率

3.3.1. 熱速度和漂移速度

3.3.2. 遷移率定義

3.3.3. 散射時間和散射截面

3.3.4. 馬提森法則

3.3.5. 霍爾效應

4. 擴散

4.1. 擴散電流方程

4.2. 擴散係數

4.2.1. 愛因斯坦關係

4.2.2. H

最後瀏覽商品 (20)