Introducing Machine Learning
Esposito, Dino, Esposito, Francesco
- 出版商: MicroSoft
- 出版日期: 2020-03-01
- 售價: $1,300
- 貴賓價: 9.5 折 $1,235
- 語言: 英文
- 頁數: 256
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0135565669
- ISBN-13: 9780135565667
-
相關分類:
Machine Learning
-
相關翻譯:
機器學習開發實戰 (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$250$225 -
$1,710$1,620 -
$520$411 -
$700Professional Scrum Development with Microsoft Visual Studio 2012 (Paperback)
-
$580$522 -
$450$351 -
$1,590$1,511 -
$403系統分析與設計:敏捷迭代方法(原書第6版)
-
$3,310$3,145 -
$958深度學習
-
$650$507 -
$301神經網絡編程實戰 : Java 語言實現, 2/e (Neural Network Programming with Java, 2/e)
-
$454JSON 實戰
-
$269大數據技術
-
$398$299 -
$460$414 -
$420$315 -
$480$379 -
$599$509 -
$800$624 -
$400$316 -
$780$616 -
$2,185$2,070 -
$550$495 -
$450$338
相關主題
商品描述
Today, machine learning offers software professionals unparalleled opportunity for career growth. In Introducing Machine Learning, best-selling software development author, trainer, and consultant Dino Esposito offers a complete introduction to the field for programmers, architects, lead developers, and managers alike.
Esposito begins by illuminating what's known about how humans and machines learn, introducing the most important classes of machine learning algorithms, and explaining what each of them can do. Esposito demystifies key concepts ranging from neural networks to supervised and unsupervised learning. Next, he explains each step needed to build a successful machine learning solution, from collecting and fine-tuning source data to building and testing your solution.
Then, building on these essentials, he guides you through constructing two complete solutions with ML.NET, Microsoft's powerful open source and cross-platform machine learning framework. Step by step, you'll create systems for performing sentiment analysis on social feeds, and analyzing traffic to predict accidents. By the time you're finished, you'll be ready to participate in data science projects and build working solutions of your own.
商品描述(中文翻譯)
今天,機器學習為軟體專業人士提供了無與倫比的職業發展機會。在《介紹機器學習》中,暢銷軟體開發作家、培訓師和顧問Dino Esposito為程式設計師、架構師、首席開發人員和經理們提供了一個完整的機器學習入門指南。
Esposito首先闡明了人類和機器學習的已知知識,介紹了最重要的機器學習算法類別,並解釋了每個算法的功能。Esposito對神經網絡、監督學習和非監督學習等關鍵概念進行了解密。接下來,他解釋了構建成功的機器學習解決方案所需的每一個步驟,從收集和微調源數據到構建和測試解決方案。
然後,基於這些基礎,他引導您使用ML.NET構建兩個完整的解決方案,這是微軟強大的開源跨平台機器學習框架。您將逐步創建用於對社交媒體進行情感分析和分析交通流量以預測事故的系統。完成後,您將準備好參與數據科學項目並構建自己的工作解決方案。