Intro to Python for Computer Science and Data Science: Learning to Program with AI, Big Data and The Cloud (美國原版)
暫譯: 計算機科學與數據科學的 Python 入門:學習使用 AI、大數據與雲端編程
Paul J. Deitel, Harvey Deitel
- 出版商: Pearson FT Press
- 出版日期: 2019-02-15
- 售價: $5,430
- 貴賓價: 9.5 折 $5,159
- 語言: 英文
- 頁數: 880
- 裝訂: Paperback
- ISBN: 0135404673
- ISBN-13: 9780135404676
-
相關分類:
Python
-
相關翻譯:
Python 大學教程:面向計算機科學和數據科學 (簡中版)
買這商品的人也買了...
-
$2,363Programming Python, 4/e (Paperback) -
金融科技實戰:Python 與量化投資$650$507 -
Python 深度學習實作:Keras 快速上手$500$390 -
看得懂的人工智慧實作書:手把手教你玩 Tensorflow$680$578 -
Python 最強入門邁向數據科學之路 -- 王者歸來 (火力加強版)$799$559 -
TensorFlow 與 Keras - Python 深度學習應用實務$650$553 -
Python 金融分析, 2/e (Python for Finance, 2/e)$980$774 -
深度學習|使用 Keras (Advanced Deep Learning with Keras: Applying GANs and other new deep learning algorithms to the real world)$560$442 -
機器學習的數學基礎 : AI、深度學習打底必讀$580$458 -
tf.keras 技術者們必讀!深度學習攻略手冊$1,000$850 -
深度學習的數學地圖 -- 用 Python 實作神經網路的數學模型 (附數學快查學習地圖)$580$458 -
Python 程式交易應用與實作:從零開始!自動化投資實戰指南$500$390 -
Python 機器學習 (上), 3/e (Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 3/e)$620$484 -
Python 機器學習 (下), 3/e (Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 3/e)$520$406 -
TensorFlow 2.x 人工智慧、機器學習超炫範例 200+ (附影音教學影片、範例程式)$560$442 -
金融人才 × 機器學習聯手出擊:專為 FinTech 領域打造的機器學習指南 (Machine Learning for Finance)$690$538 -
用 TensorFlow 玩轉大數據與量化交易, 2/e$650$553 -
Python : 股票演算法交易實務 147個關鍵技巧詳解, 2/e$580$452 -
從來沒有這麼明白過:TensorFlow 上車就學會 (書況差限門市銷售))$690$545 -
資料科學的建模基礎 : 別急著 coding!你知道模型的陷阱嗎?$599$509 -
第一次用 Word 寫論文就上手$540$427 -
$1,620Python Crash Course : A Hands-On, Project-Based Introduction to Programming, 3/e (Paperback) -
Learn Enough Python to Be Dangerous: Software Development, Flask Web Apps, and Beginning Data Science with Python (Paperback)$1,580$1,548 -
史上最強 Python 入門邁向頂尖高手之路王者歸來, 3/e (全彩印刷)$1,200$948 -
一步到位!Python 程式設計 – 最強入門教科書, 4/e$630$498
商品描述
For introductory-level Python programming and/or data-science courses.
A groundbreaking, flexible approach to computer science and data science
The Deitels’ Introduction to Python for Computer Science and Data Science: Learning to Program with AI, Big Data and the Cloud offers a unique approach to teaching introductory Python programming, appropriate for both computer-science and data-science audiences. Providing the most current coverage of topics and applications, the book is paired with extensive traditional supplements as well as Jupyter Notebooks supplements. Real-world datasets and artificial-intelligence technologies allow students to work on projects making a difference in business, industry, government and academia. Hundreds of examples, exercises, projects (EEPs), and implementation case studies give students an engaging, challenging and entertaining introduction to Python programming and hands-on data science.
The book's modular architecture enables instructors to conveniently adapt the text to a wide range of computer-science and data-science courses offered to audiences drawn from many majors. Computer-science instructors can integrate as much or as little data-science and artificial-intelligence topics as they'd like, and data-science instructors can integrate as much or as little Python as they'd like. The book aligns with the latest ACM/IEEE CS-and-related computing curriculum initiatives and with the Data Science Undergraduate Curriculum Proposal sponsored by the National Science Foundation.
商品描述(中文翻譯)
適用於入門級的 Python 程式設計和/或資料科學課程。
一種開創性且靈活的計算機科學和資料科學方法
Deitel 的 計算機科學與資料科學的 Python 入門:學習使用 AI、大數據和雲端程式設計 提供了一種獨特的入門 Python 程式設計教學方法,適合計算機科學和資料科學的受眾。該書提供了最新的主題和應用涵蓋,並配有廣泛的傳統補充材料以及 Jupyter Notebooks 補充材料。真實的數據集和人工智慧技術使學生能夠參與對商業、工業、政府和學術界產生影響的專案。數百個範例、練習、專案(EEPs)和實作案例研究為學生提供了一個引人入勝、具挑戰性且有趣的 Python 程式設計和實作資料科學的入門。
本書的模組化架構使得教師能夠方便地調整文本,以適應來自多個專業的計算機科學和資料科學課程。計算機科學教師可以根據需要整合任意多或少的資料科學和人工智慧主題,而資料科學教師則可以根據需要整合任意多或少的 Python。本書與最新的 ACM/IEEE 計算機科學及相關計算課程倡議以及由國家科學基金會贊助的資料科學本科課程提案相一致。
