Detection and Estimation Theory: and Its Applications (Paperback)
暫譯: 檢測與估計理論及其應用 (平裝本)
Thomas Schonhoff, Arthur Giordano
- 出版商: Prentice Hall
- 出版日期: 2006-10-01
- 售價: $1,068
- 語言: 英文
- 頁數: 560
- 裝訂: Paperback
- ISBN: 0130894990
- ISBN-13: 9780130894991
已絕版
買這商品的人也買了...
-
$2,090Microwave Mobile Communications (Hardcover)
-
$480$379 -
$1,300$1,274 -
$5,730$5,444 -
$880$695 -
$1,700$1,666 -
$650$553 -
$980$774 -
$690$538 -
$550$468 -
$1,200$948 -
$350$298 -
$990$891 -
$1,100$1,078 -
$580$452 -
$1,200$948 -
$600$480 -
$540$459 -
$580$493 -
$580$458 -
$1,596OFDM Baseband Receiver Design for Wireless Communications (Hardcover)
-
$2,600$2,548 -
$8,550$8,123 -
$680$578 -
$580$452
相關主題
商品描述
Description
For courses in Estimation and Detection Theory offered in departments of Electrical Engineering.
This is the first student-friendly textbook to comprehensively address the topics of both detection and estimation – with a thorough discussion of the underlying theory as well as the practical applications. By addressing detection and estimation theory in the same volume, the authors encourage a greater appreciation of the strong coupling and often blurring of these fields of study. In order to modernize classical topics, the text focuses on discrete signal processing with continuous signal presentations included to demonstrate uniformity and consistency of the results.
Part I Review Chapters
Chapter 1 Review of Probability
1.1 Chapter Highlights
1.2 Definition of Probability
1.3 Conditional Probability
1.4 Bayes’ Theorem
1.5 Independent Events
1.6 Random Variables
1.7 Conditional Distributions and Densities
1.8 Functions of One Random Variable
1.9 Moments of a Random Variable
1.10 Distributions with Two Random Variables
1.11 Multiple Random Variables
1.12 Mean-Square Error (MSE) Estimation
1.13 Bibliographical Notes
1.14 Problems
Chapter 2 Stochastic Processes
2.1 Chapter Highlights
2.2 Stationary Processes
2.3 Cyclostationary Processes
2.4 Averages and Ergodicity
2.5 Autocorrelation Function
2.6 Power Spectral Density
2.7 Discrete-Time Stochastic Processes
2.8 Spatial Stochastic Processes
2.9 Random Signals
2.10 Bibliographical Notes
2.11 Problems
Chapter 3 Signal Representations and Statistics
3.1 Chapter Highlights
3.2 Relationship of Power Spectral Density and Autocorrelation Function
3.3 Sampling Theorem
3.4 Linear Time-Invariant and Linear Shift-Invariant Systems
3.5 Bandpass Signal Representations
3.6 Bibliographical Notes
3.7 Problems
Part II Detection Chapters
Chapter 4 Single Sample Detection of Binary Hypotheses
4.1 Chapter Highlights
4.2 Hypothesis Testing and the MAP Criterion
4.3 Bayes Criterion
4.4 Minimax Criterion
4.5 Neyman-Pearson Criterion
4.6 Summary of Detection-Criterion Results Used in Chapter 4
Examples
4.7 Sequential Detection
4.8 Bibliographical Notes
4.9 Problems
Chapter 5 Multiple Sample Detection of Binary Hypotheses
5.1 Chapter Highlights
5.2 Examples of Multiple Measurements
5.3 Bayes Criterion
5.4 Other Criteria
5.5 The Optimum Digital Detector in Additive Gaussian Noise
5.6 Filtering Alternatives
5.7 Continuous Signals–White Gaussian Noise
5.8 Continuous Signals–Colored Gaussian Noise
5.9 Performance of Binary Receivers in AWGN
5.10 Further Receiver-Structure Considerations
5.11 Sequential Detection and Performance
5.12 Bibliographical Notes
5.13 Problems
Chapter 6 Detection of Signals with Random Parameters
6.1 Chapter Highlights
6.2 Composite Hypothesis Testing
6.3 Unknown Phase
6.4 Unknown Amplitude
6.5 Unknown Frequency
6.6 Unknown Time of Arrival
6.7 Bibliographical Notes
6.8 Problems
Chapter 7 Multiple Pulse Detection with Random Parameters
7.1 Chapter Highlights
7.2 Unknown Phase
7.3 Unknown Phase and Amplitude
7.4 Diversity Approaches and Performances
7.5 Unknown Phase, Amplitude, and Frequency
7.6 Bibliographical Notes
7.7 Problems
Chapter 8 Detection of Multiple Hypotheses
8.1 Chapter Highlights
8.2 Bayes Criterion
8.3 MAP Criterion
8.4 M-ary Detection Using Other Criteria
8.5 M-ary Decisions with Erasure
8.6 Signal-Space Representations
8.7 Performance of M-ary Detection Systems
8.8 Sequential Detection of Multiple Hypotheses
8.9 Bibliographical Notes
8.10 Problems
Chapter 9 Nonparametric Detection
9.1 Chapter Highlights
9.2 Sign Tests
9.3 Wilcoxon Tests
9.4 Other Nonparametric Tests
9.5 Bibliographical Notes
9.6 Problems
Part III Estimation Chapters
Chapter 10 Fundamentals of Estimation Theory
10.1 Chapter Highlights
10.2 Formulation of the General Parameter Estimation Problem
10.3 Relationship between Detection and Estimation Theory
10.4 Types of Estimation Problems
10.5 Properties of Estimators
10.6 Bayes Estimation
10.7 Minimax Estimation
10.8 Maximum-Likelihood Estimation
10.9 Comparison of Estimators of Parameters
10.10 Bibliographical Notes
10.11 Problems
Chapter 11 Estimation of Specific Parameters
11.1 Chapter Highlights
11.2 Parameter Estimation in White Gaussian Noise
11.3 Parameter Estimation in Nonwhite Gaussian Noise
11.4 Amplitude Estimation in the Coherent Case with WGN
11.5 Amplitude Estimation in the Noncoherent Case with WGN
11.6 Phase Estimation in WGN
11.7 Time-Delay Estimation in WGN
11.8 Frequency Estimation in WGN
11.9 Simultaneous Parameter Estimation in WGN
11.10 Whittle Approximation
11.11 Bibliographical Notes
11.12 Problems
Chapter 12 Estimation of Multiple Parameters
12.1 Chapter Highlights
12.2 ML Estimation for a Discrete Linear Observation Model
12.3 MAP Estimation for a Discrete Linear Observation Model
12.4 Sequential Parameter Estimation
12.5 Bibliographical References
12.6 Problems
Chapter 13 Distribution-Free Estimation–Wiener Filters
13.1 Chapter Highlights
13.2 Orthogonality Principle
13.3 Autoregressive Techniques
13.4 Discrete Wiener Filter
13.5 Continuous Wiener Filter
13.6 Generalization of Discrete and Continuous Filter Representations
13.7 Bibliographical Notes
13.8 Problems
Chapter 14 Distribution-Free Estimation–Kalman Filter
14.1 Chapter Highlights
14.2 Linear Least-Squares Methods
14.3 Minimum-Variance Weighted Least-Squares Methods
14.4 Minimum-Variance Least-Squares or Kalman Algorithm
14.5 Kalman Algorithm Computational Considerations
14.6 Kalman Algorithm for Signal Estimation
14.7 Continuous Kalman Filter
14.8 Extended Kalman Filter
14.9 Comments and Extensions
14.10 Bibliographical Notes
14.11 Problems
Part IV Application Chapters
Chapter 15 Detection and Estimation in Non-Gaussian Noise Systems
15.1 Chapter Highlights
15.2 Characterization of Impulsive Noise
15.3 Detector Structures in Non-Gaussian Noise
15.4 Selected Examples of Noise Models, Receiver Structures, and Error-Rate Performance
15.5 Estimation of Non-Gaussian Noise Parameters
15.6 Bibliographical Notes
15.7 Problems
Chapter 16 Direct-Sequence Spread-Spectrum Signals in Fading Multipath Channels
16.1 Chapter Highlights
16.2 Introduction to Direct-Sequence Spread Spectrum Communications
16.3 Fading Multipath Channel Models
16.4 Receiver Structures with Known Channel Parameters
16.5 Receiver Structures without Knowledge of Phase
16.6 Receiver Structures without Knowledge of Amplitude or Phase
16.7 Receiver Structures and Performance with No Channel Knowledge
16.8 Bibliographical Notes
16.9 Problems
Chapter 17 Multiuser Detection
17.1 Chapter Highlights
17.2 Introduction
17.3 Synchronous Multiuser Direct-Sequence CDMA
17.4 Asynchronous Multiuser Direct-Sequence CDMA
17.5 Speculative Summary
17.6 Bibliographical Notes
17.7 Problems
Chapter 18 Low-Probability-of-Intercept Communications
18.1 Chapter Highlights
18.2 LPI System Model
18.3 Interceptor Detector Structures
18.4 Filter-Bank Combiners
18.5 Feature Detectors
18.6 Bibliographical Notes
18.7 Problems
Chapter 19 Spectrum Estimation
19.1 Chapter Highlights
19.2 Overview of Power Spectral Estimation
19.3 Periodogram Techniques
19.4 Parametric Spectral Estimation Techniques
19.5 Examples of Spectral Estimation from MATLAB
19.6 Bibliographical Notes
19.7 Problems
Appendix A Properties of Distribution and Density Functions
Appendix B Common pdfs, cdfs, and Characteristic Functions
B.1 One Point
B.2 Zero-One
B.3 Binomial
B.4 Poisson
B.5 Uniform
B.6 Exponential
B.7 Gaussian-Based Distributions
B.8 Compilation of Mean, Variance, and Characteristic Function
Appendix C Multiple Normal Random Variables
C.1 Zero-Mean Jointly Normal Real Random Variables
C.2 Nonzero-Mean Jointly Normal Real Random Variables
C.3 Linear Transformation of Zero-Mean Jointly Normal Real Random
Variables
C.4 Central Limit Theorem 609
C.5 Nonzero Mean Jointly Normal Complex Random Variables
Appendix D Properties of Autocorrelation and Power Spectral Density Functions
D.1 Autocorrelation Functions–Continuous Processes
D.2 Power Spectral Density Functions–Continuous Process
D.3 Properties of Discrete Processes
Appendix E Equivalence of LTI and LSI Bandlimited Systems
Appendix F Theory of Random Sums
Appendix G Evaluations Useful for Chapters 6, 7, and 16
Appendix H Gram-Charlier Type Series
Appendix I Mobile User Detection
I.1 Overview of Commercial Cellular Networks
I.2 CDMA
I.3 Bibliographical Notes
Bibliography
Glossary
List of Symbols
Index
商品描述(中文翻譯)
描述
本書是針對電機工程系所開設的估計與檢測理論課程的第一本學生友好教科書,全面探討檢測與估計的主題,深入討論其基礎理論及實際應用。透過在同一本書中探討檢測與估計理論,作者鼓勵讀者更深入理解這些研究領域之間的強耦合性及其模糊性。為了現代化經典主題,文本重點放在離散信號處理上,並包含連續信號的呈現,以展示結果的一致性和穩定性。
目錄
第一部分 回顧章節
第1章 機率回顧
1.1 章節重點
1.2 機率的定義
1.3 條件機率
1.4 貝葉斯定理
1.5 獨立事件
1.6 隨機變數
1.7 條件分佈與密度
1.8 單隨機變數的函數
1.9 隨機變數的矩
1.10 兩隨機變數的分佈
1.11 多隨機變數
1.12 均方誤差 (MSE) 估計
1.13 參考文獻
1.14 問題
第2章 隨機過程
2.1 章節重點
2.2 平穩過程
2.3 週期平穩過程
2.4 平均值與遍歷性
2.5 自相關函數
2.6 功率譜密度
2.7 離散時間隨機過程
2.8 空間隨機過程
2.9 隨機信號
2.10 參考文獻
2.11 問題
第3章 信號表示與統計
3.1 章節重點
3.2 功率譜密度與自相關函數的關係
3.3 取樣定理
3.4 線性時不變系統與線性移位不變系統
3.5 帶通信號表示
3.6 參考文獻
3.7 問題
第二部分 檢測章節
第4章 二元假設的單樣本檢測
4.1 章節重點
4.2 假設檢驗與 MAP 準則
4.3 貝葉斯準則
4.4 最小最大準則
4.5 Neyman-Pearson 準則
4.6 第4章中使用的檢測準則結果摘要
範例
4.7 序列檢測
4.8 參考文獻
4.9 問題
第5章 二元假設的多樣本檢測
5.1 章節重點
5.2 多次測量的範例
5.3 貝葉斯準則
5.4 其他準則
5.5 加性高斯噪聲中的最佳數位檢測器
5.6 濾波替代方案
5.7 連續信號–白色高斯噪聲
5.8 連續信號–有色高斯噪聲
5.9 在 AWGN 中的二元接收器性能
5.10 進一步的接收器結構考量
5.11 序列檢測與性能
5.12 參考文獻
5.13 問題
第6章 隨機參數信號的檢測
6.1 章節重點
6.2 複合假設檢驗
6.3 未知相位
6.4 未知幅度
6.5 未知頻率
6.6 未知到達時間
6.7 參考文獻
6.8 問題
第7章 隨機參數的多脈衝檢測
7.1 章節重點
7.2 未知相位
7.3 未知相位與幅度
7.4 多樣性方法與性能
7.5 未知相位、幅度與頻率
7.6 參考文獻
7.7 問題
第8章 多假設的檢測
8.1 章節重點
8.2 貝葉斯準則
8.3 MAP 準則
8.4 使用其他準則的 M-元檢測
8.5 帶刪除的 M-元決策
8.6 信號空間表示
8.7 M-元檢測系統的性能
8.8 多假設的序列檢測
8.9 參考文獻
8.10 問題
第9章 非參數檢測
9.1 章節重點
9.2 符號檢驗
9.3 Wilcoxon 檢驗
9.4 其他非參數檢驗
9.5 參考文獻
9.6 問題
第三部分 估計章節
第10章 估計理論基礎
10.1 章節重點
10.2 一般參數估計問題的公式化
10.3 檢測與估計理論之間的關係
10.4 估計問題的類型
10.5 估計量的性質
10.6 貝葉斯估計
10.7 最小最大估計
10.8 最大似然估計
10.9 參數估計量的比較
10.10 參考文獻
10.11 問題
第11章 特定參數的估計
11.1 章節重點
11.2 在白色高斯噪聲中的參數估計
11.3 在非白色高斯噪聲中的參數估計
11.4 在 WGN 中的相干情況下的幅度估計
11.5 在 WGN 中的非相干情況下的幅度估計
11.6 在 WGN 中的相位估計
11.7 在 WGN 中的時間延遲估計
11.8 在 WGN 中的頻率估計
11.9 在 WGN 中的同時參數估計
11.10 Whittle 近似
11.11 參考文獻
11.12 問題
第12章 多參數的估計
12.1 章節重點
12.2 離散線性觀察模型的 ML 估計
12.3 離散線性觀察模型的 MAP 估計
12.4 序列參數估計
12.5 參考文獻
12.6 問題
第13章 無分佈估計–維納濾波器
13.1 章節重點
13.2 正交性原則
13.3 自回歸技術
13.4 離散維納濾波器
13.5 連續維納濾波器
13.6 離散與連續濾波器表示的概括
13.7 參考文獻
13.8 問題
第14章 無分佈估計–卡爾曼濾波器
14.1 章節重點
14.2 線性最小二乘法
14.3 最小方差加權最小二乘法
14.4 最小方差最小二乘法或卡爾曼算法
14.5 卡爾曼算法的計算考量
14.6 用於信號估計的卡爾曼算法
14.7 連續卡爾曼濾波器
14.8 擴展卡爾曼濾波器
14.9 評論與擴展
14.10 參考文獻
14.11 問題
第四部分 應用章節
第15章 在非高斯噪聲系統中的檢測與估計
15.1 章節重點