Adversarial Robustness for Machine Learning
暫譯: 機器學習的對抗性穩健性

Chen, Pin-Yu, Hsieh, Cho-Jui

  • 出版商: Academic Press
  • 出版日期: 2022-08-25
  • 售價: $4,040
  • 貴賓價: 9.5$3,838
  • 語言: 英文
  • 頁數: 298
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0128240202
  • ISBN-13: 9780128240205
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

商品描述

Adversarial Robustness for Machine Learning summarizes the recent progress on this topic and introduces popular algorithms on adversarial attack, defense and veri?cation. Sections cover adversarial attack, veri?cation and defense, mainly focusing on image classi?cation applications which are the standard benchmark considered in the adversarial robustness community. Other sections discuss adversarial examples beyond image classification, other threat models beyond testing time attack, and applications on adversarial robustness. For researchers, this book provides a thorough literature review that summarizes latest progress in the area, which can be a good reference for conducting future research.

In addition, the book can also be used as a textbook for graduate courses on adversarial robustness or trustworthy machine learning. While machine learning (ML) algorithms have achieved remarkable performance in many applications, recent studies have demonstrated their lack of robustness against adversarial disturbance. The lack of robustness brings security concerns in ML models for real applications such as self-driving cars, robotics controls and healthcare systems.

商品描述(中文翻譯)

機器學習的對抗穩健性》總結了該主題的最新進展,並介紹了流行的對抗攻擊、防禦和驗證算法。各章節涵蓋了對抗攻擊、驗證和防禦,主要集中在圖像分類應用上,這是對抗穩健性社群中考慮的標準基準。其他章節討論了超越圖像分類的對抗範例、超越測試時間攻擊的其他威脅模型,以及對抗穩健性的應用。對於研究人員而言,本書提供了全面的文獻回顧,總結了該領域的最新進展,對於進行未來研究是一個良好的參考。

此外,本書也可以作為研究生課程的教科書,專注於對抗穩健性或可信的機器學習。儘管機器學習(ML)算法在許多應用中取得了顯著的表現,但最近的研究顯示它們對對抗擾動的穩健性不足。這種穩健性不足在自駕車、機器人控制和醫療系統等實際應用中帶來了安全隱患。

最後瀏覽商品 (20)