Machine Learning : A Bayesian and Optimization Perspective, 2/e (Hardcover)
暫譯: 機器學習:貝葉斯與優化觀點,第二版(精裝本)

Sergios Theodoridis

買這商品的人也買了...

商品描述

Machine Learning: A Bayesian and Optimization Perspective, Second Edition gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches based on optimization techniques combined with the Bayesian inference approach. The book builds from the basic classical methods to recent trends, making it suitable for different courses, including pattern recognition, statistical/adaptive signal processing, and statistical/Bayesian learning, as well as short courses on sparse modeling, deep learning, and probabilistic graphical models. In addition, sections cover major machine learning methods developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science.

Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth and supported by examples and problems, giving an invaluable resource to both the student and researcher for understanding and applying machine learning concepts.

This updated edition includes many more simple examples on basic theory, complete rewrites of the chapter on Neural Networks and Deep Learning, and expanded treatment of Bayesian learning, including Nonparametric Bayesian Learning.

 

  • Presents the physical reasoning, mathematical modeling and algorithmic implementation of each method
  • Updates on the latest trends, including sparsity, convex analysis and optimization, online distributed algorithms, learning in RKH spaces, Bayesian inference, graphical and hidden Markov models, particle filtering, deep learning, dictionary learning and latent variables modeling
  • Provides case studies on a variety of topics, including protein folding prediction, optical character recognition, text authorship identification, fMRI data analysis, change point detection, hyperspectral image unmixing, target localization, and more

商品描述(中文翻譯)

《機器學習:貝葉斯與優化觀點(第二版)》提供了機器學習的統一視角,涵蓋了基於優化技術結合貝葉斯推斷方法的概率性和確定性方法。這本書從基本的經典方法開始,延伸到最近的趨勢,適合不同的課程,包括模式識別、統計/自適應信號處理和統計/貝葉斯學習,以及有關稀疏建模、深度學習和概率圖模型的短期課程。此外,書中還涵蓋了在不同學科中發展的主要機器學習方法,例如統計學、統計和自適應信號處理以及計算機科學。

本書專注於數學背後的物理推理,深入解釋各種方法和技術,並通過示例和問題進行支持,為學生和研究人員理解和應用機器學習概念提供了寶貴的資源。

這一更新版包括了更多有關基本理論的簡單示例,對神經網絡和深度學習章節進行了全面重寫,並擴展了對貝葉斯學習的處理,包括非參數貝葉斯學習。

- 提供每種方法的物理推理、數學建模和算法實現
- 更新最新趨勢,包括稀疏性、凸分析與優化、在線分佈式算法、RKH空間中的學習、貝葉斯推斷、圖形和隱馬可夫模型、粒子過濾、深度學習、字典學習和潛變量建模
- 提供多種主題的案例研究,包括蛋白質摺疊預測、光學字符識別、文本作者識別、fMRI數據分析、變化點檢測、高光譜影像解混、目標定位等

作者簡介

ergios Theodoridis is Professor of Signal Processing and Machine Learning in the Department of Informatics and Telecommunications of the University of Athens.

He is the co-author of the bestselling book, Pattern Recognition, and the co-author of Introduction to Pattern Recognition: A MATLAB Approach.

He serves as Editor-in-Chief for the IEEE Transactions on Signal Processing, and he is the co-Editor in Chief with Rama Chellapa for the Academic

Press Library in Signal Processing.

 

He has received a number of awards including the 2014 IEEE Signal Processing Magazine Best Paper Award, the 2009 IEEE Computational Intelligence Society Transactions on Neural Networks Outstanding Paper Award, the 2014 IEEE Signal Processing Society Education Award, the EURASIP 2014 Meritorious Service Award, and he has served as a Distinguished Lecturer for the IEEE Signal Processing Society and the IEEE Circuits and Systems Society. He is a Fellow of EURASIP and a Fellow of IEEE.

作者簡介(中文翻譯)

ergios Theodoridis 是雅典大學資訊與電信系的信號處理與機器學習教授。

他是暢銷書《模式識別》的共同作者,以及《模式識別導論:MATLAB 方法》的共同作者。

他擔任《IEEE 信號處理期刊》的主編,並與 Rama Chellapa 共同擔任信號處理學術出版社的主編。

他獲得了多項獎項,包括 2014 年 IEEE 信號處理雜誌最佳論文獎、2009 年 IEEE 計算智能學會神經網絡期刊傑出論文獎、2014 年 IEEE 信號處理學會教育獎、EURASIP 2014 優秀服務獎,並曾擔任 IEEE 信號處理學會和 IEEE 電路與系統學會的特邀講者。他是 EURASIP 和 IEEE 的會士。