Principles and Practice of Big Data: Preparing, Sharing, and Analyzing Complex Information
暫譯: 大數據的原則與實踐:準備、分享與分析複雜資訊
Jules J Berman
- 出版商: Academic Press
- 出版日期: 2018-07-25
- 售價: $2,800
- 貴賓價: 9.5 折 $2,660
- 語言: 英文
- 頁數: 480
- 裝訂: Paperback
- ISBN: 0128156090
- ISBN-13: 9780128156094
-
相關分類:
大數據 Big-data
-
相關翻譯:
大數據原理與實踐:復雜信息的準備、共享和分析(原書第2版) (簡中版)
立即出貨 (庫存 < 3)
相關主題
商品描述
Principles and Practice of Big Data: Preparing, Sharing, and Analyzing Complex Information, Second Edition updates and expands on the first edition, bringing a set of techniques and algorithms that are tailored to Big Data projects. The book stresses the point that most data analyses conducted on large, complex data sets can be achieved without the use of specialized suites of software (e.g., Hadoop), and without expensive hardware (e.g., supercomputers). The core of every algorithm described in the book can be implemented in a few lines of code using just about any popular programming language (Python snippets are provided).
Through the use of new multiple examples, this edition demonstrates that if we understand our data, and if we know how to ask the right questions, we can learn a great deal from large and complex data collections. The book will assist students and professionals from all scientific backgrounds who are interested in stepping outside the traditional boundaries of their chosen academic disciplines.
- Presents new methodologies that are widely applicable to just about any project involving large and complex datasets
- Offers readers informative new case studies across a range scientific and engineering disciplines
- Provides insights into semantics, identification, de-identification, vulnerabilities and regulatory/legal issues
- Utilizes a combination of pseudocode and very short snippets of Python code to show readers how they may develop their own projects without downloading or learning new software
商品描述(中文翻譯)
《大數據的原則與實踐:準備、分享與分析複雜資訊(第二版)》更新並擴展了第一版,帶來了一套針對大數據專案量身定制的技術和演算法。這本書強調,大多數在大型複雜數據集上進行的數據分析可以在不使用專門的軟體套件(例如,Hadoop)和不需要昂貴的硬體(例如,超級電腦)的情況下完成。書中描述的每個演算法的核心都可以用幾行程式碼在幾乎任何流行的程式語言中實現(提供了 Python 的範例程式碼)。
透過使用新的多個範例,本版展示了如果我們理解自己的數據,並且知道如何提出正確的問題,我們可以從大型和複雜的數據集合中學到很多東西。這本書將幫助來自各種科學背景的學生和專業人士,讓他們有興趣超越自己所選學術領域的傳統界限。
- 提出廣泛適用於幾乎任何涉及大型和複雜數據集的專案的新方法論
- 為讀者提供跨越多個科學和工程學科的資訊性新案例研究
- 提供有關語意、識別、去識別化、脆弱性以及監管/法律問題的見解
- 利用偽代碼和非常短的 Python 程式碼片段的結合,向讀者展示如何在不下載或學習新軟體的情況下開發自己的專案